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Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dy-
namics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting
from complex inter- and intramolecular motions using only molecular dynamics methods is not easy. This is
because molecular motions comprise complex multiple modes, and peaks broaden and overlap owing to various
relaxation processes and inhomogeneous broadening. On the basis of an anharmonic multimode Brownian
oscillator model with nonlinear system–bath coupling, we have developed an approach that simulates 2D
spectra, taking into account arbitrary modes of intermolecular and intramolecular vibrations simultaneously.
Although only two-mode quantum calculations are feasible with this model, owing to high computational
costs, here we restrict ourselves to the classical case and perform three-mode calculations. We demonstrate
the applicability of our method by calculating 2D correlation infrared spectra of water for symmetric stretch-
ing, antisymmetric stretching, and bending modes. The quantum effects of these results are deduced by
comparing 2D quantum spectra previously obtained for two intramolecular modes with those obtained using
our classical approach under the same physical conditions. The results show that the 2D spectra calculated
by separating the stretching modes into symmetric and asymmetric modes provide better descriptions of peak
profiles, such as the splitting of cross-peaks.

I. INTRODUCTION

Interactions between solute molecules and solvent wa-
ter have critical roles in many chemical and biologi-
cal processes; for instance, high-frequency intramolec-
ular modes facilitate bond formation and breakage of
solute molecules, whereas low-frequency intermolecular
modes contribute irreversible thermal excitation and
relaxation.1,2 Infrared (IR), THz, and Raman spectro-
scopies have been used to elucidate the spectroscopic line
shapes of liquid water under various vibrational modes
and interactions of these modes. Specifically, IR has
been used to study intramolecular OH stretching (∼3600
cm−1) and HOH intramolecular bending (∼1600 cm−1)
motions, whereas THz and Raman approaches have been
used for HB intermolecular translational (vibrational)
motions (33–100 cm−1) and HB intermolecular vibra-
tional motions (33–400 cm−1).
Recent advances in two-dimensional (2D) experimen-

tal techniques, which imprint an additional time cor-
relation on the system response, have expanded our
ability to study both intermolecular and intramolecular
modes in the 0–4000 cm−1 frequency range. These tech-
niques include: 2D IR spectroscopy,3–11 2D THz–Raman
spectroscopies,12–16 and 2D THz–IR–visible light17,18

(equivalent to 2D IR–IR–Raman) spectroscopy.19 These
methods are critical for understanding the degree of cou-
pling to surrounding molecules, often referred to as the
“bath”.20–23
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Molecular dynamics (MD) simulations24,25 and sim-
ulations using stochastic models with noise correlation
functions evaluated from MD simulations have been used
to analyze these 2D signals.26–28 However, no theoretical
results have yet been obtained that satisfactorily explain
the experimental results. This is likely to be because wa-
ter interactions are complex; thus, intramolecular modes
must be treated quantum mechanically,29–32 and any cal-
culation of multidimensional spectra must properly ac-
count for the effects of quantum entanglement due to
interactions with surrounding molecules.33–35

In condensed phases, a molecular system interacts with
its surrounding environment (bath) in a non-perturbative
and non-Markovian manner. Such interactions lead to
quantum entanglement (bathentanglement)36 between
the solute molecule and the bath in the quantum case;
this, in turn, has an effect on the linear response spec-
trum, in the form of changes in peak position and pro-
file. The entanglement effect in nonlinear response spec-
tra is particularly important; examples include photon
echo in interactions with external laser fields that pro-
duce echo signals. In such cases, the calculation of 2D
spectra requires the use of theoretical approaches such as
stochastic theory26–28, hierarchical equations of motion
(HEOM),33–38 and the quasi-adiabatic path integral,39

which treat the thermal bath in a non-Markovian, non-
perturbative, and non-factorized manner.
The only quantum theory that currently enables ef-

fective description of the intramolecular modes of water,
including population relaxation, phase relaxation, and
anharmonicity of modes with coupling between modes,
is the multimode anharmonic system–bath model. This
model was built on the basis of MD,19,22,40 specifi-
cally targeted to be solved with the HEOM.33–35,41–43
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It can be used to accurately describe the effects of non-
perturbative and non-Markovian dephasing and relax-
ation, as well as temperature effects relating to thermal
equilibrium.36,44 However, it is a computationally expen-
sive approach, and, to date, it has only been successfully
applied to consider two modes at a time.37,38 To prop-
erly understand energy and coherence transfer between
intramolecular modes, at least three modes must be con-
sidered simultaneously: the OH antisymmetric and sym-
metric stretching modes and the HOH bending mode.

Although experimental techniques are rapidly advanc-
ing, the limitation of theoretical analysis to two modes
remains a significant impediment to scientific progress.
In this study, we perform simulations in the classical
case, taking advantage of current graphics processing
unit (GPU) technology to perform three-mode calcula-
tions. First, we compute 2D IR spectra of a liquid water
model consisting of three primary intermolecular modes.
Although it is not possible for us to directly incorporate
quantum effects, we assess the influence of such effects
by comparing the results of quantum and classical calcu-
lations for the two-mode scenario.

This paper is organized as follows. In Section II, we
introduce the multimode anharmonic Brownian model
and the classical HEOM in a Wigner space representa-
tion. The set of parameters used in the simulation is also
given. In Section III, 2D IR correlation spectra are com-
puted and analyzed for the two-mode and three-mode
cases. Section IV presents some concluding remarks.

II. THEORY

A. Multimode anharmonic Brownian model for
intramolecular modes

We consider a liquid water model consisting of one
of the three primary intermolecular and intramolecu-
lar modes. These modes are described by dimension-
less vibrational coordinates q = (q1, q1′ , q2). Each mode
is independently coupled to the other optically inactive
modes, which constitute a bath system represented by an
ensemble of harmonic oscillators. The total Hamiltonian
can then be expressed as19,37,38

Ĥtot =
∑
s

(
Ĥ

(s)
A + Ĥ

(s)
I + Ĥ

(s)
B

)
+

∑
s<s′

Ûss′(q̂s, q̂s′),

(1)

where

Ĥ
(s)
A =

p̂2s
2ms

+ Ûs(q̂s) (2)

is the Hamiltonian for the sth mode, with mass ms, co-
ordinate q̂s, and momentum p̂s; and

Ûs(q̂s) =
1

2
msν

2
s q̂

2
s +

1

3!
gs3q

3
s (3)

is the anharmonic potential for the sth mode, described
by the frequency νs and cubic anharmonicity gs3 . The
mode–mode interaction between the sth and s′th modes
is expressed as

Ûss′(q̂s, q̂s′) = gss′ q̂sq̂s′ +
1

6

(
gs2s′ q̂

2
s q̂s′ + gss′2 q̂sq̂

2
s′
)
, (4)

where gss′ represents the second-order anharmonicity,
and gs2s′ and gss′2 represent the third-order anharmonic-
ity. The bath Hamiltonian for the sth mode is expressed
as

Ĥ
(s)
B =

∑
js

[
p̂2js
2mjs

+
mjsω

2
js

2

(
x̂js − αjs V̂s(q̂s)

)2
]
, (5)

where the momentum, coordinate, mass, and frequency
of the jsth bath oscillator are given by pjs , xjs , mjs and
ωjs , respectively. The system–bath interaction, defined
as

H
(s)
I = −Vs(qs)

∑
js

αjsxjs , (6)

consists of linear–linear (LL) and square–linear (SL)

system–bath interactions, Vs(qs) ≡ V
(s)
LL qs + V

(s)
SL qs

2/2,

with coupling strengths V
(s)
LL , V

(s)
SL , and αjs .

33–35,40–43

Whereas the LL interaction mainly contributes to en-
ergy relaxation, the LL+SL system–bath interaction
causes vibration dephasing in the case of slow modu-
lation, owing to frequency fluctuations in the system
oscillations.22,33,44,45 The bath property is characterized
by the spectral distribution function (SDF), defined as,

Js(ω) ≡
∑
js

α2
js

2msωjs

δ(ω − ωjs). (7)

Here, we assume the Drude SDF expressed as

Js(ω) =
msζs
2π

γ2
sω

ω2 + γ2
s

, (8)

where ζs is the system–bath coupling strength, and γs
represents the width of the SDF for mode s, which relates
to the vibrational dephasing time, defined as τs = 1/γs.
The classical collective coordinate is written as Xs.

The correlation function is then given by ⟨Xs(t)Xs(0)⟩ ∝
e−γs|t|. This indicates that the bath oscillators inter-
act with the system in the form of stochastic Gaus-
sian noise with correlation time t0, if the relaxation ef-
fect is ignored.44,46 This model has been used to derive
predictions for 2D Raman,33,44 2D THz–IR40, 2D IR–
Raman,19,37 and 2D IR22,35,42,43 spectra.
In the past, various stochastic-theory-based models

have been developed to analyze 2D IR spectra with re-
spect to stretching modes of water; in these models, the
noise amplitude ∆ and correlation time τs were evalu-
ated based on classical MD trajectories or quantum me-
chanics/molecular mechanics approaches. The stochas-
tic model for a single stretching mode corresponds to the
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LL+SL anharmonic Brownian model for a single mode
when the noise correlation is slow (γs ≪ ω0) and in the
high-temperature limit (βℏω0/2 ≪ 1) with respect to the
mode frequency ω0.

43 As the stochastic model ignores the
effects of the population relaxation, the 0-1-0 and 0-1-2
peak profiles are more or less symmetric and not repro-
ducible, for example, as in experimentally obtained 2D
spectra in the mid-IR region.6–8

Incorporating the non-Condon effect26–28 or the effects
of intermolecular hydrogen coupling among the surround-
ing molecules27 within the framework of the stochastic
model in the eigenstate representation results in the 0-1-
0 and 0-1-2 peaks becoming asymmetric. However, the
calculated 2D spectra continue to differ significantly from
the observed 2D spectra in the mid-IR region.6–8 By con-
trast, the LL+SL anharmonic Brownian model described
in molecular coordinates facilitates investigation of vibra-
tional relaxation and energy transfer under not only fluc-
tuation but also dissipation at finite temperatures in both
intramolecular and intermolecular modes, in a physically
consistent manner.33,44 Thus, the present model allows
for more detailed analysis of 2D vibrational spectra com-
pared with previous approaches.

For the two-mode case, we determined the parameter
set for the present model to reproduce the 2D IR–Raman
spectra obtained from the classical MD simulations and
modified it to account for quantum effects.37,38 As an
example of a three-mode case, we consider here the fol-
lowing modes: (1) OH antisymmetric stretching (anti-
stretching), (1′) OH symmetric stretching (stretching),
and (2) HOH bending (bending).

Notably, both the stochastic model and the present
model use parameters based on classical MD results.
However, the parameters of the stochastic model were
selected to reproduce solely the trajectory of the stretch-
ing motion,26–28 whereas those of the present model were
chosen to reproduce the entire profile of the 2D IR–
Raman spectrum obtained from MD results.19 Conse-
quently, the present model encompasses various effects,
including phase relaxation and population relaxation be-
tween modes. Although it is difficult to compare param-
eters between the two models, because they have been
constructed in very different ways, the noise correlation
functions for each mode are well defined and show rela-
tively good agreement, although their amplitude is very
different.

B. Classical hierarchal Fokker–Planck equations for a
multimode system

To study the effects of thermal activation, relaxation,
vibrational dephasing, the anharmonicity of modes, and
the nonlinearities of the dipole moment in the 2D spectra
within a unified framework, we required a kinetic equa-
tion that could treat thermal fluctuations as well as dis-
sipation in a non-perturbative, non-Markovian manner.
For the LL+SL anharmonic Brownian model, the classi-

cal hierarchal Fokker–Planck equations (CHFPE) in the
phase space for the system described by Eqs. (1)−(8),
developed for multidimensional vibrational spectra, can
be expressed as19,40,44

∂W (n)(q,p; t)

∂t
= (L̂(q,p)−

∑
s

nsγs)W
(n)(q,p; t)

+
∑
s

Φ̂sW
(n+es)(q,p; t)

+
∑
s

Θ̂sW
(n−es)(q,p; t), (9)

where W (n)(q,p; t) is the Wigner distribution function
(WDF). As we are considering the case of three modes,
the hierarchical elements are expressed here as n =
(n1, n2, n3), where each sth mode element is denoted by
a positive integer ns, and es is the unit vector for the
sth space. Note that W (n)(q,p; t) has physical mean-
ing only when n = (0, 0, 0); for other values of n, it is
an auxiliary WDF that indicates the non-perturbative,
non-Markovian system–bath interactions.36,44 The classi-
cal Liouvillian L̂ for the system HamiltonianHsys(q,p) ≡∑

s H
(s)
A +

∑
s<s′ Uss′(q̂s, q̂s′) can be expressed as

L̂(q,p)W (q,p) ≡ {Hsys(q,p),W (q,p)}PB, (10)

where { , }PB is the Poisson bracket defined as

{A,B}PB ≡
∑
s

(
∂A

∂qs

∂B

∂ps
− ∂A

∂ps

∂B

∂qs

)
(11)

for any functions A and B. Operators Φ̂s and Θ̂s repre-
sent the energy exchange between the sth mode and the
sth bath, respectively. They are expressed as33,34

Φ̂s =
∂Vs(qs)

∂qs

∂

∂ps
(12)

and

Θ̂s =
msζsγs

β

∂Vs(qs)

∂qs

∂

∂ps
+ ζsγsps

∂Vs(qs)

∂qs
, (13)

where ζs is the coupling strength, γs is the inverse corre-
lation time, and T is the temperature.
The three-body response function of the dipole mo-

ment can be expressed as44

R(t3, t2, t1) =

∫∫
dpdqµ(q)G(t3)µ(q)×G(t2)

×µ(q)
×G(t1)µ(q)×W eq(p, q), (14)

where the hyperoperator × is defined as µ(q)
×
W (p, q) ≡

{µ(q),W (p, q)}PB; G(t) is the Green’s function for the
time-evolution operator, as presented in Eq. (9); and
W eq(p, q) is the equilibrium WDF expressed in terms of
the hierarchical elements.19,40,44 The dipole function is
defined as

µ(q) =
∑
s

(µsqs + µssq
2
s) +

∑
s̸=s′

µss′qsqs′ . (15)
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The non-Condon effects and mode-mixing effects of dipo-
lar interactions are included in the model as µssq

2
s and

µss′qsqs′ .
The 2D correlation IR spectrum is obtained by adding

the two terms corresponding to the rephasing term
RNR(t3, t2, t1) and the non-rephasing term RR(t3, t2, t1)
with equal weights.47–49 A common definition of a 2D
correlation spectrum can be expressed as22,48,49

IC(ω3, t2, ω1)

= Im

{∫ ∞

0

dt1

∫ ∞

0

dt3 e
−iω1t1e+iω3t3RR(t3, t2, t1)

}
+ Im

{∫ ∞

0

dt1

∫ ∞

0

dt3 e
iω1t1e+iω3t3RNR(t3, t2, t1)

}
.

(16)

Although we could theoretically separate RR and RNR

by choosing specific Liouville paths in the energy state
model, this process is not easy in cases where the re-
sponse functions must be calculated in phase space.
Therefore, we eliminate the undesired rephasing contri-
bution, using the Fourier transform of t2 for IC(ω3, t2, ω1)
with RR(t3, t2, t1) = RNR(t3, t2, t1) = R(t3, t2, t1) to re-
move the oscillatory contribution in period t2 with fre-
quency 2νs, where νs is the frequency of the target mode
s.22,24,38,50

C. Integration of the CHFPE

The CHFPE is time-integrated using the fourth-order
Runge–Kutta method. For efficient parallel processing,
the coordinate derivatives in the kinetic term are repre-
sented as a triple diagonal matrix. We then integrate Eq.
(9) using the compact-finite-difference scheme51, with the
non-uniform mesh defined as follows:

q =
kqhl

(1.0 + βe−
k2

α2 )
(1.0 + βe−

1.0
α2 ), (17)

where α and β are parameters that characterize the non-
uniform mesh, k is an equidistant parameter in the range
−1.0 ≤ k ≤ 1.0, and qhl is the size of half the domain in
the q direction. For numerical integrations, the hierarchy
is truncated to satisfy the condition δtot > ∆n/N , where
δtot is the tolerance of the truncation, with N =

∑
s ns

and

∆n =
∏
s

1

(ns)
0.05 (

msζs
β

)
ns

. (18)

By adjusting the number of hierarchical elements, we can
calculate the spectrum with the desired accuracy.

The time evolution in the CHFPE is processed using
parallel cyclic reduction. The entire integration routine
is coded in CUDA using the CUBLAS library and exe-
cuted on a GPU without requiring memory transfer to
the CPU. The source code that we developed was run

on NVIDIA A100 (VRAM 80G) GPU boards hosted by
PC with Intel XEON 6212U (24 cores) and took about 1
week to compute one 2D correlation spectrum on a single
GPU. The VRAM used during calculations was 1 GB or
less. The source code used in the present investigation
will be provided in a forthcoming paper.

III. NUMERICAL RESULTS

The method developed in this work can be used to
simulate nonlinear vibrational spectra of intramolecular
and intermolecular modes of any molecule via design of
a multimode LL+SL Brownian model based on MD sim-
ulations and/or experimental results. Although the clas-
sical description is valid for intermolecular vibrational
modes in which the thermal excitation at room temper-
ature is close to the excitation frequency, intramolecular
vibrational modes in which the vibrational excitation en-
ergy is much higher than the thermal excitation must
be treated quantum mechanically. However, with cur-
rent CPU power, only two-mode quantum calculations
are possible.37,38 Therefore, in the present work, we lim-
ited ourselves to the classical case and used GPUs instead
of CPUs to perform three-mode calculations. Quantum
effects on the classical three-mode spectrum were then in-
ferred by comparing the quantum two-mode spectra pre-
sented in refs. 37 and 38 with classical two-mode spectra
obtained using the present software for the same model.

A. The two-mode case: comparison with quantum results

First, we considered a two-mode case in which the
stretching and anti-stretching modes were considered as
a single mode with ν1=3520 cm−1 that interacts with the
bending mode with ν2=1710 cm−1.19 The parameter val-
ues of the simulations are given in Table I. The two-mode
model was developed to simulate a 2D IR–Raman spec-
trum using the CHFPE19 and then modified to simulate
2D IR–Raman and 2D correlation IR spectra using quan-
tum hierarchical Fokker–Planck equations.37,38 Compar-
ing previously obtained quantum mechanically calculated
2D IR spectra38 with those obtained here classically using
the same model under the same conditions enabled us to
identify the purely quantum effects in the 2D spectrum,
thereby providing information for deducing quantum re-
sults from classical three-mode calculations.
Fig. 1 shows the 2D IR spectra for the stretching

motion and the stretching→bending motion obtained in
the quantum and classical cases under the same physical
conditions. Note that a similar comparison has previ-
ously been made for 2D IR–Raman spectroscopy.37 How-
ever, to investigate quantum effects in vibrational de-
phasing, it is necessary to perform the analysis for 2D
IR. As in the 2D IR–Raman case, the discrepancy in
peak positions between the classical and quantum sce-
narios could be attributed to the classical treatment of
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TABLE I. Parameter values of the multimode intramolecular LL+SL BO model for (1) stretching and (2) bending modes
obtained on the basis of refs. 37 and 38. Here, we set the fundamental frequency to ν0 = 4000 cm−1. The normalized parameters

were defined as ζ̃s ≡ (ω0/ωs)
2ζs, Ṽ

(s)
LL ≡ (νs/ν0)V

(s)
LL , Ṽ

(s)
SL ≡ V

(s)
SL , g̃s3 ≡ (νs/ν0)

3gs3 ,µ̃s ≡ (µ0/ωs)µs, and µ̃ss ≡ (ν0/ωs)
2µss.

Anharmonic mode–mode coupling and dipole elements are given by g̃121′ = 0, g̃11′2 = 0.2, and µ̃11′ = 2.0× 10−3.

s νs (cm−1) γs/ω0 ζ̃s Ṽ
(s)
LL Ṽ

(s)
SL g̃s3 µ̃s µ̃ss

1 3520 5.0×10−3 9 0 1.0 −5.0×10−1 3.3 1.2×10−2

2 1710 2×10−2 0.8 0 1.0 −7×10−1 1.8 0
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FIG. 1. Third-order 2D correlation IR spectra for the two-
mode case consisting of a stretching mode with ν1=3520 cm−1

and a bending mode with ν2=1710 cm−1. The upper panels
show the stretching motion, whereas the lower panels show
stretching→bending motions for different t2. All spectral in-
tensities were normalized with respect to the absolute values
of the maximum peak intensity of each diagonal peak. In
each picture, the left panels show the quantum results from
ref. 38, and the right panels show the classical results. The
direction of the nodal lines (red dashed lines) in the upper
panel represents the extent of correlation between the vibra-
tional coherences of the t1 and t3 periods. For clarity, data for
off-diagonal peaks were multiplied by 3 in the cases of t2 = 0
fs and 50 fs. The quantum results were reproduced from H.
Takahashi and Y. Tanimura, J. Chem. Phys. 158, 124108
(2023), with the permission of AIP Publishing.

the anharmonic potential using a quantum mechanically
constructed potential.29,35,52–55 In the classical case, the
frequency is determined by the curvature at the bottom
of the potential; in the quantum case, it is amplified by
zero-point oscillations and can be determined by the dif-
ference between the ground state and the first excited

 

1400 1600 1800 1400 1600 18001400 1600 18001400 1600 1800

1400

1600

1800

t2 = 0 fs

-1

-0.5

0

0.5

1

ω
3

 (
c
m

-1
)

(a)

tt22 = 100 fs t 2 = 200 fs

1400

1600

1800

t2 = 50 fs

-1

-0.5

0

0.5

1

ω
3

 (
c
m

-1
)

(b)

(c)(c) (d)

1400 1600 1800 1400 1600 18001400 1600 18001400 1600 1800

ω
1
(cm-1)

qm

clcl

qm

qm

cl clqm

ω
1
(cm-1)

qm

FIG. 2. Third-order 2D correlation IR spectra of the bending
mode calculated with stretching–bending coupling for differ-
ent t2. All spectral intensities were normalized with respect
to the absolute maximum peak intensity in the t2 = 0 case.
The left panels show the quantum results from ref. 38, and
the right panels show the classical results. The quantum re-
sults were reproduced from H. Takahashi and Y. Tanimura,
J. Chem. Phys. 158, 124108 (2023), with the permission of
AIP Publishing.

state. The peak separation corresponding to the 0-1-0
and 0-1-2 transitions does not occur in classical simula-
tions, because the energy is not discretized. However,
the small peak separation between the (red) peak corre-
sponding to the 0-1-0 transition and the (blue) peak cor-
responding to the 0-1-2 transition in the quantum results
indicates that the anharmonicity of the modes was small,
whereas the spectrum vanished without anharmonicity.35

The broadening of the peak profile in the ω1–ω3

diagonal direction resulted from the inhomogeneous
distribution,11,22 which is larger in the quantum case
than in the classical case. This is because the intramolec-
ular vibrational states in the classical case are localized
at the bottom of the potential at room temperature,
whereas in the quantum case, they spread out owing to
the zero-point oscillation of the ground state.

In the quantum case, the intensity of the stretching–
bending cross-peak first decreased and then increased
with time t2, whereas in the classical case, the intensity
decreased gradually with time. This was because in the

https://doi.org/10.1063/5.0141181
https://doi.org/10.1063/5.0141181
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quantum case, the cross-peak arises from the coherence
between the stretching and bending modes, whereas in
the classical case, it arises as a result of population re-
laxation from the stretching mode to the bending mode.
As shown in Fig. 2, the intensity of the peak decreased
monotonically. By contrast, in the quantum case, the
intensity did not change, and the nodal line of the peak
exhibited a loss of coherence up to 50 fs.

Except for the region below 50 fs, where the effects of
quantum coherence became important, qualitative prop-
erties such as the phase relaxation time, which could be
estimated from the positions of the nodes, did not differ
significantly between the classical and quantum cases.
This was because the anharmonicity of the intramolecu-
lar vibrational modes was small, such that no difference
between the quantum and classical dynamical behaviors
was apparent.

B. The three-mode case: effect of the inter-stretch
coupling
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FIG. 3. Third-order 2D correlation IR spectra for stretching
and stretching→bending motions calculated with the three-
mode model consisting of (1) OH stretching with ν1 = 3570
cm−1, (1′) OH anti-stretching with ν1′ = 3470 cm−1, and (2)
HOH bending with ν2 = 1710 cm−1. The mode–mode cou-
pling strength between these three modes was chosen to be
weak (Table III). The remaining parameters were the same
as in Fig. 1. All spectral intensities were normalized with
respect to the absolute maximum peak intensity of each di-
agonal peak.
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weak compared with that in Fig. 5, the contour interval was
tripled for emphasis.

We next present the calculation results for the three-
mode case, which include: (1) the OH stretching mode
with ν1=3570 cm−1, (1′) OH anti-stretching mode with
ν1′=3470 cm−1, and (2) HOH bending mode with
ν2=1710 cm−1. As the stretching and anti-stretching
modes could not be distinguished from the 2D spectral
profiles, it was not feasible to ascertain the model pa-
rameters for each of the two modes and the coupling
between them using the 2D IR–Raman-based method.
Therefore, we determined these by referring to the pa-
rameters of a similar model for the Brownian SDF, which
were obtained directly from the MD trajectories using a
machine learning approach.23 However, given the inher-
ent differences in models that include polarization, the
parameters of two models differed significantly, includ-
ing the coupling strength between the stretching–bending
modes. Therefore, we used only the ratio of the cou-
pling strength between the three intramolecular modes
obtained from the ML approach; its overall magnitude
was used as a parameter, as given in Table III for a weak
coupling case and in Table IV for a strong coupling case.
It is important to note that here the resulting coupling
between the stretching modes was so strong that the rel-
ative strength of the coupling between the stretching and
bending modes was weaker than in the two-mode case.
Fig. 3 shows 2D correlation IR spectra for the

stretching modes and the stretching→bending cross-
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TABLE II. Parameter values of the multimode intramolecular LL+SL BO model for (1) asymmetric stretching, (1′) symmetric
stretching, and (2) bending modes. Here, we set the fundamental frequency to ω0 = 4000 cm−1.

s νs (cm−1) γs/ω0 ζ̃s Ṽ
(s)
LL Ṽ

(s)
SL g̃s3 µ̃s µ̃ss

1 3570 5.0×10−3 9 0 1.0 −5.0×10−1 3.3 1.2×10−2

1’ 3470 5.0×10−3 9 0 1.0 −5.0×10−1 3.3 1.2×10−2

2 1710 2×10−2 0.8 0 1.0 −7×10−1 1.8 0

TABLE III. Parameter values for anharmonic mode–mode coupling and optical properties in the case of weak inter-stretch
coupling.

s− s′ g̃ss′ g̃s2s′ g̃ss′2 µ̃ss′

1− 1′ −2.5×10−3 0.16 −2.1×10−3 0

1− 2 5×10−8 −1.3×10−2 −2×10−4 2.0× 10−3

1′ − 2 −4×10−4 6.2×10−2 −6.0×10−3 2.0× 10−3

TABLE IV. Parameter values for anharmonic mode–mode coupling and optical properties in the case of strong inter-stretch
coupling. Each mode–mode coupling variable was set to approximately twice that shown in Table III.

s− s′ g̃ss′ g̃s2s′ g̃ss′2 µ̃ss′

1− 1′ −5×10−3 0.32 −4.2×10−3 0

1− 2 10×10−8 −2.6×10−2 4×10−4 2.0× 10−3

1′ − 2 −8×10−4 1.2×10−1 −1.2×10−2 2.0× 10−3

peaks, whereas Fig. 4 shows those for the bending
mode in the case of weak mode–mode coupling (Ta-
ble III). The remaining parameters used are given in
Table II. Here, we considered the two stretch modes
separately; the positive (red) 0-1-0 peaks of symmetric
and antisymmetric stretching appear at frequencies of
(ω1, ω3) = (3570, 3570) and (3470, 3470) cm−1, respec-
tively, whereas the negative (blue) 0-1-2 peaks appear at
(3470, 3300) and (3570, 3400) cm−1, respectively. This
was because in our classical simulations, each wave packet
is localized at the bottom of the potential, so the peak
was not broadened, whereas in the real system each peak
was broadened and overlapped as a single peak owing to
quantum effects. In addition, the inhomogeneous broad-
ening was enhanced owing to the presence of two separate
peaks compared with the two-mode case.

As t2 increased, the 2D peak profiles evolved in time
from homogeneous to inhomogeneous distributions. The
t2 dependence of the stretching peaks was similar to that
of the classical and quantum two-mode cases, with a vi-
brational dephasing time of about 500 fs. At t2 = 5000 fs,
we observed two diagonal peaks from the two stretching
modes and two off-diagonal peaks from the transitions
among them; thus, square-like plateaus appeared in the
positive and negative peaks. To investigate the effects
of the frequency difference between the two stretching
modes, we reduced the difference by 20 cm−1. The re-
sults, which are presented in Appendix A, show that for-

mation of square plateaus was suppressed.

The stretching→bending cross-peaks are shown in the
lower panels in Fig. 4. The intensities of these peaks were
much weaker than those shown in Fig. 1, because the an-
harmonic coupling between 1-2 and 1′-2 was weaker than
that in the two-mode case. As the stretching→bending
peaks arose from two paths, 0-1 and 0-1′, their peak pro-
files were elongated in the ω1 direction, whereas there
was no elongation in the ω3 direction because the anhar-
monicities of the two stretching modes were chosen to
be the same. As in the two-mode case, the intensity of
the positive and negative peaks decreased monotonically
with increasing t2 in this classical calculation.

For t2=100 and 5000 fs, we observed a small posi-
tive peak between the pronounced positive and negative
peaks. To analyze this feature, we plotted the 2D IR of
the bending mode (Fig. 4); we observed that the peak
position of the bending mode in the ω3 direction was
higher than those of the the stretching→bending peaks.
This indicated that the dominant contribution of the sig-
nal came from the 2-1 transition of the bending mode,
which was lower than the 1-0 transition frequency ow-
ing to the anharmonicity of the bending mode. Given
that µ1or1′ ≈ 2µ2, the second excited state of the bend-
ing mode was effectively excited by the stretching mode
through anharmonic couplings g̃221 and g̃221′ . Conse-
quently, the contribution of the 2-1 transition was greater
than that of the 1-0 transition. The negative peak from
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the 2-3 transition and the positive peak from the 1-0
transition partially canceled each other out. The small
peak between the positive and negative peaks in the
stretching→bending spectrum can be considered to be
a remnant of the 1-0 transition peak.

The results for the strong mode–mode coupling case
are shown in Fig. 5. Owing to the increased strengths
of the 1-2 and 1′-2 modes, the stretching→bending
cross-peak became more pronounced compared with that
shown in Fig. 3, whereas the intensity of the stretch-
ing peaks was suppressed. Other than these changes,
the overall peak profile remained largely unchanged as
the mode–mode coupling strength increased. As the
mode–mode coupling mechanism had a minimal impact
on the excitation and de-excitation processes of the bend-
ing modes, the peak profiles shown in Fig. 6 remained
consistent even with stronger coupling. These behaviors
were also observed in the results shown in the Appendix
A, where the frequency difference between stretching and
anti-stretching was reduced.

IV. CONCLUSION

Although limited to the classical case, we have devel-
oped a CHFPE-based theory for an anharmonic multi-
mode LL+SL Brownian model, enabling calculation of
ultrafast 2D vibrational spectra by considering any three
modes of inter- and intramolecular vibration. Using this
framework, we have simulated 2D-correlated IR spectra
for the stretching mode, the anti-stretching mode, and
the bending mode of liquid water. Except for the re-
gion shorter than 50 fs, where the effects of quantum
coherence became important, the computed 2D spectra
exhibited trends akin to those of experimental obser-
vations, including trends in qualitative properties such
as increased inhomogeneous broadening and asymmetric
profiles of the positive and negative peaks in the stretch-
ing modes. However, we were unable to replicate the
elongation of the negative stretching peak observed ex-
perimentally in the low-frequency direction.6–8 This elon-
gation could be attributed to strong anharmonicity in the
stretching mode potential, possibly a potential with a lo-
cal minimum. The effects of combination bands of libra-
tion and bending modes in 2D IR9 remain unexplored,
as do the effects of anharmonicity and mode–mode cou-
pling between low-frequency intermolecular modes in 2D
THz–Raman spectra.12–16

Our approach is also suitable for performing such cal-
culations for any solute molecules in a solvent. Neverthe-
less, the selection of models and model parameters should
be validated through comparison with results obtained
using advanced experimental and simulation techniques.
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Appendix A: Different frequency sets for stretching modes
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FIG. 7. Third-order 2D correlation IR spectra for the three
modes: (1) the OH stretching mode with ν1 = 3560 cm−1, (1′)
the OH anti-stretching mode with ν1′=3480 cm−1, and (2)
HOH bending motions with ν2=1710 cm−1. The interaction
between the stretching and anti-stretching modes was weak
(Table III). The remaining parameters were the same as in
Fig. 1. All spectral intensities were normalized with respect
to the absolute value of the maximum peak intensity of each
diagonal peak.

In addition to the coupling strength between the two
stretching modes, we modified their fundamental fre-
quencies (Figs. 3 and 5). Specifically, (1) the OH stretch-
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FIG. 8. The same calculations were performed as in Fig. 7;
besides this, we set the strong coupling (Table IV). All spec-
tral intensities were normalized with respect to the absolute
value of the maximum peak intensity of each diagonal peak.

ing mode was changed from ν1=3570 to 3560 cm−1, and
(1′) the anti-stretching mode was altered from ν1′ =3470
to 3480 cm−1. All other parameters remained consistent
with those shown in Figs. 3 and 5.

The behaviors of the 2D peak profiles shown in Figs.
7 and 8 did not differ significantly from those shown in
Figs. 3 and 5. However, the vibrational coherence, in-
dicated by the nodal line at t0 = 0, slightly increased
as the resonance frequency decreased, because the two
resonance peaks were closer together. They merged at
a smaller t2 owing to vibrational dephasing. The forma-
tion of a square-like plateau in the positive and negative
peaks at t2= 5000 fs was also suppressed.

For the stretching→bending spectra, the three peaks
could be more clearly observed because of the more ef-
fective energy transfer from the two stretching modes to
the second excited state of the bending mode.
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