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A full molecular dynamics (MD) simulation approach to calculate multidimensional third-order
infrared (IR) signals of molecular vibrational modes is proposed. Third-order IR spectroscopy
involves three-time intervals between three excitation and one probe pulses. The nonequilibrium
MD (NEMD) simulation allows us to calculate molecular dipoles from nonequilibrium MD
trajectories for different pulse configurations and sequences. While the conventional NEMD
approach utilizes MD trajectories started from the initial equilibrium state, our approach does from
the intermediate state of the third-order optical process, which leads to the doorway-window
decomposition of nonlinear response functions. The decomposition is made before the second pump
excitation for a two-dimensional case of IR photon echo measurement, while it is made after the
second pump excitation for a three-dimensional case of three-pulse IR photon echo measurement.
We show that the three-dimensional IR signals are efficiently calculated by using the MD
trajectories backward and forward in time for the doorway and window functions, respectively. We
examined the capability of the present approach by evaluating the signals of two- and
three-dimensional IR vibrational spectroscopies for liquid hydrogen fluoride. The calculated signals
might be explained by anharmonic Brownian model with the linear-linear and square-linear
system-bath couplings which was used to discuss the inhomogeneous broadening and dephasing
mechanism of vibrational motions. The predicted intermolecular librational spectra clearly reveal
the unusually narrow inhomogeneous linewidth due to the one-dimensional character of HF

molecule and the strong hydrogen bond network. © 2008 American Institute of Physics.

[DOL: 10.1063/1.2828189]

I. INTRODUCTION

Multidimensional vibrational spectroscopies, whose
spectra are obtained by recording the signals as a function of
the time durations between the trains of pulses, have the
potential to reveal the detailed static and dynamical features
of molecular interactions in liquids..l‘2 Techniques such as
two-dimensional Raman®~’ and two- and three-dimensional
infrared (IR) spectroscopesg_13 are now being used to inves-
tigate the interactions between the inter- and intramolecular
modes'*? as well as the dephasing mechanism of vibra-
tional motions™2° that relate to the homogeneity versus in-
homogeneity of liquids. The homogeneous broadening or vi-
brational dephasing of signals arise from the solvent motion
occurring on time scales comparable to the time scales of
vibration, while the inhomogeneous broadening is arising
from the liquid features that change so slowly and look es-
sentially static.””*® The anharmonic coupling between the
inter- and intramolecular modes as well as dipole and in-
duced dipole interactions also play an important role for en-
ergy and coherent relaxation processes in liquids.zgf32 The
contributions to the signals from them can be distinguished
as a difference of profiles or different spectral peaks in mul-
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tidimensional spectroscopy, which is similar to the spin echo
measurement for dephasing and the two-dimensional nuclear
magnetic resonance measurement for the well-known cou-
pling effects between spins. The advanced experiments such
as multidimensional spectroscopies need to be guided by the-
oretical calculations and simulations, since a relationship be-
tween the molecular motion and signals is not simple for
such complex systems as molecular liquids, and other non-
linear processes may overlap with the signal of interest due
to the complexity of the experimental setups.

For analyzing the detail of experimental results, molecu-
lar dynamics (MD) simulations are helpful means since they
can predict not only the line shape and intensities of the
signals but also the role of molecular interactions through the
capability of changing the interaction potentials. Previous
simulations for two-dimensional (2D) IR spectroscopy have
used the basic strategy to ascertain the importance of the
structure change or vibrational dephasing by partitioning the
role of the environment, as taken from the MD simulation in
the form of the fluctuations of the vibrational energy states,
then calculated the signals by employing the analytical ex-
pression of the third-order response function of infrared echo
measurements.”>*' This procedure works fairly well for
cases where the modes to be observed and the solvent or
environment modes are well separated.21 This procedure
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does not work, however, if the target modes and the environ-
ment are strongly coupled or the target modes are not well
defined due to the structure or conformal changes of mol-
ecules that are influenced by the bath. In addition, even in the
well separated case, this procedure does not provide a legiti-
mate description of bath effects for a long time period since
the bath modes cause not only fluctuations in the energy
levels but also energy dissipation which leads the system to
thermal equilibrium as described through fluctuation-
dissipation theorem.?"*® The most rigorous way to calculate
nonlinear signals of complex system is to perform full MD
calculations to simulate response functions. From the full
MD approach, the absolute magnitude of the response func-
tion in relation to other background signal may be deduced
from this procedure, which is extremely useful to compare
the predicted signals with the experimental results. Note that,
although exact calculations must be based on quantum mo-
lecular dynamics simulation, the quantum effects usually
play a minor role for vibrational spectroscopy in condensed
phases other than the zero point oscillation of high-frequency
intramolecular modes. Therefore, classical molecular dynam-
ics simulations and, if necessary, with some quantum correc-
tions may be accurate enough to simulate most of experi-
mental data of the 2D IR spectroscopies.

While the molecular dynamics simulation techniques
themselves are well established, the calculation of the non-
linear response functions from full MD simulations is not
well explored. This is because nonlinear vibrational spectros-
copy became experimentally possible recently and the calcu-
lation of nonlinear response functions is extremely difficult
due to the high sensitivity of the stability matrix elements
involved in the nonlinear response functions.**™*® As was
pointed out, while the conventional one-dimensional Raman
and linear IR spectroscopies analyze the harmonicity of mo-
lecular motions, the multidimensional Raman and IR spec-
troscopies can detect nonharmonic motions of molecules by
eliminating the harmonic contribution to the signals.26 This
feature of multidimensional spectroscopies also makes the
simulation difficult since we cannot apply the normal mode
analysis which assumes harmonic motions for inter- and in-
tramolecular modes.

Three MD methods have been developed for 2D Raman
spectroscopy. The first one is the equilibrium approach that
computes, exactly or approximately, a nonlinear optical re-
sponse function expressed in the multiple Poisson brackets
of the equilibrium molecular trajectories.“z"m"w_51 The sec-
ond method is the nonequilibrium MD (NEMD) approach
that performs the 2D spectroscopy experiment on the
computer.szf55 In the NEMD approach, the Raman polariz-
ability is directly calculated from NEMD trajectories under a
pair of external laser pulses with different time sequences.
The third method hybridizes the first and second methods to
avoid the time-consuming calculations of the stability matri-
ces which are inherent in the equilibrium method with using
nonequilibrium trajectories for a single laser excitation.”®’

In this paper, we use the NEMD approach to calculate
the signals of 2D and three-dimensional (3D) IR spec-
troscopies. To reduce the number of necessary NEND trajec-
tories, we decompose the third-order response function into
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doorway and window parts.sg’59 While the conventional
NEMD simulation utilizes the trajectories from the initial
equilibrium state to the final state, our approach goes from
the decomposed state to the final state (forward in time) for
the window part and the decomposed state to the initial state
(backward in time) for the doorway part. It is shown that the
NEMD approach with the forward-backward trajectories
sampling method enhances the efficiency of the numerical
simulation for such multidimensional IR spectroscopy as
three-pulse IR photon echo measurement. To demonstrate the
accuracy and efficiency of the present approach, we have
evaluated the signals of 2D and 3D IR vibrational spec-
troscopies for liquid hydrogen fluoride. The liquid HF forms
the hydrogen bond network in a zigzag chain structure due to
the strong hydrogen bond interactions and quadrupole mo-
ment of HF molecules.®*% Thus, the liquid HF exhibits un-
usually narrow inhomogeneous linewidth in contrast to lig-
uid water®” and is an interesting target even for
demonstration. The one-dimensional character of the hydro-
gen bond network also makes the conceptualization of the
spatial correlations simple.

This paper is organized as follows. In Sec. II, we explain
our simulation method for the third-order IR response func-
tion. In Sec. III, we show the results of the simulations for
liquid hydrogen fluoride. Section IV is devoted to concluding
remarks.

Il. SIMULATION METHODS
A. Doorway and window functions

Since the extension to N particle systems in three-
dimensional space is straightforward, we start from a one-
dimensional particle system described by the Hamiltonian
H(p,q), where p and g are the momentum and coordinate of
the particle, respectively. In the third-order IR measurement,
the system interacts with the three IR pump pulses H,
=— @) Z=ap.Er(t), where u(q) is the molecular dipole and
E,(1) is the time envelopment of the kth pulse, and then the
excited molecular dipole is detected by the probe pulse. If we
consider the impulsive pump pulses, E,(1)=E,81), E,(t)
=E,8(t—1,), and E.(t)=E 8(t—t,—1,), and probe the dipole at
t=t,+1,+13, the third-order IR response is expressed in terms
of the molecular dipole moments as®

3
Rty ) = A + 12 9,y + 1))l ] OV,

(2.1)

where fi() is the Heisenberg operator of the dipole moment
#(G). The molecular states in the response functions are ex-
pressed in the Liouville space brackets |g,¢"))=|g)¢| and
({q.4"|p={qlplg") for any density operator p. The initial
equilibrium distribution and the trace operation are then ex-
pressed respectively as e P/Z=|p*)) and [ dr, (I
= [[dqdq’ 8(q—q"){{q.q"|, where B=1/kgT and Z is the par-
tition function. We denote the commutation operator of the
Hamiltonian (the quantum Liouvillian) and the dipole by

e A= A with ([A= i[H,Al/f and p*A=jA
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-A A for a right-hand side operator A.The response functions
can be rewritten as

3
R(t3,t2,t1) — (ﬁ_) f dF (<F|,ue th3 lLIQM e 1L11ﬁ><|peq>>_

(2.2)
By inserting the completeness relation 1
=JJdq'dq""q".q"" g .q""[=JdT"'|I" )T, we can de-

compose the response functions into the doorway and win-
. 58,59
dow functions as™

R(t3,t2,t]) = f dF W d(t2 + t’;,l-‘ )Dab(F' t]) (23)

The window function is defined by

Wty +13:1") = gfdr <<F|,&,e‘”"3 _lLt2|F'>> (2.4)

and is interpreted as the expectation value of g with the
density operator p,(t,+13)=exp[—iLt;]i* exp[—iLt,]|T"))
that was initially in the uniform (flat) distribution |I'’)) then
interacted with the third-pump pulse @&* between the time

evolutions exp[—iLt,] and exp[—iLt;]. The doorway function
is defined by

(i)?

Doy(I"31) = 23 —7 (| e a % pt). (25)

This is the probability distribution of the uniform distribution
(I'| for the density operator pg(t;)=a exp[—iLt]
27|p%9)). This operator corresponds to the expectation value
of 4 for density operator at time ¢, started from the initial
state with the first pump excitation @*|p9)).

In the Wigner representation, the distribution function is
expressed as®"%®

| x x
P(p,q) = ﬂf dxe’p'x/h<<q - E,q + 5|p>>

The completeness relation is now given by 1
=[[dp'dq'lp’.q')){{p".q'|. Then, the doorway and window
functions are, respectively, rewritten as

(2.6)

Wty +1t3:p"q") = f f dpdqu(q)exp[— Ly(p'.q")t;]

X g expl— Ly(p’,q')t,]

X8p-p)olg—-q') (2.7)
and
D,(p'.q" 1) = f f dpodqydpo—p')dqo—q')
X fn(qo)expl= Ly(po,qo)t]
X i q0) P (P, o) (2.8)

where —Ly/(p,q) and f;;(q) are the quantum Liouvillian and
the dipole operator i2*/#% in the Wigner representation,26
respectively, and P*4(py,qo)={(py.qo| p*))=e P P01/ 7.
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To obtain the above expression, we inserted the com-
pleteness relation right after the second pump interaction. We
can break the theoretical description at arbitrary point during
the course of the time evolution by assuming the laser fields
do not overlap at the assigned point, and rigorously recast the
response function in terms of the two decomposed
functions.>® For the 2D IR case, it is convenient to decom-
pose the response function into the doorway and window
functions before the second pump excitation as

Wiedlts + 13:0"") = j f dpdapla)expl- Lu(p'.a)ts]

X (g exp[— Ly(p'.q")t5]

X gl dp-p)dqg-q') (2.9)
and
Da(p’,q’;tl)EJfdpodqoé(po—p’)ri(qo—q’)
Xexp[— Ly(p’,q")t112w(q0) P (po.90) -
(2.10)

In both cases, the response function is calculated by integrat-
ing over p' and ¢’ as

R(ts,1,1)) = f dp'dq'W.,(t;+t5:p",q")D (" .q" ;1))

(2.11)

or

R(ts,tz,t1)=Jdp’dq’Wbcd(tz+ts;p’,q’)Da(p’,q’;tl)-

(2.12)

Either in the quantum or classical case, the above ex-
pression indicates that the response function can be obtained
from the separately calculated doorway and window func-
tions for any p’ and ¢'. Expressions for N particles system

can be obtained by replacing (p,q)—(p, q)
=YY ,qﬁ)) fnlq) —>M‘§J(q) %
-p')8q-q')— dp-p)dq-q’) = ](11 a_xyzﬁ(p )

3q"~q), [fdpdg— [ [dpda=T1" 11, [ [dp'” dq(“’
etc. The quantum and classical L10uv1lhans are given by

—LW(P,Q) 2 E ja) (a)
j=1 a=x,y,z 0751
h
- 2{ ,k(ﬂlw - (I>
(a)> "k
ihiz 7 2idp;
_Ujk<6]](~a) 2 pn (a)’qk :|} (2.13)
and
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- Ly(p.q) =

IS [
j=1 a=xy,z J ﬁq(U)

+EaU”‘(q 290 aa)) (2.14)

k#j ﬁq(a) ap! i

respectively, where Uj(q;,qy) is the interaction potential be-
tween the jth and kth particles. In this paper, we employ the
classical Liouvillian to calculate the response function by
means of MD simulations.

B. Nonequilibrium molecular dynamics simulation

We use the nonequilibrium (finite field) simulation ap-
proach to evaluate the doorway and window functions. The
nonequilibrium approach allows us to calculate the physical
observable from nonequilibrium simulations for different
pulse configurations and sequences.sz’53

In order to evaluate W_,(¢;p’,q"), conventional finite
field approaches utilize the unperturbed and perturbed
Hamiltonians, H and H.(7)=H-E_ u(q)8(7—1t,—1,), respec-
tively. Instead, we have employed the inverted force
method,” which considers H,(7) and the perturbed Hamil-
tonian with the opposite sign HA7)=H+E, u(q) 8(17—1,-1,).
Using H(7) instead of H, we can efficiently eliminate the
higher order contribution of the perturbation from the expec-
tation values. We denote the Liouvillian for H.(7) and Hz(7)
by LS(p',q";7) and LS (p',q" ;7). The corresponding distri-
bution functions are expressed as P(p,q;p’ q t)
=expl[~[; d7Lg(p'.q")]8(p-p")d(g~q") and P(p.q:p".q";
r)=exp[— f 1d7'L S g D18(p—p")8q—q'), respectively.

By treating the pump excitation E,. perturbatively, we
can express the window function as

Wet:p'.q') = dpdqu(q)[P(p.q;p'.q" ;1)

2EA

—P“(p,q;p’,q’;t)]

[uc(p'.q

") = pAp'q )],

2E At
(2.15)

where t=t,+1; and wu.(p’',q’;t) and uz(p’',q’;t) mean the
expectation values of the dipole for the perturbation
FE ulg)8(7—1t,—1,). Since the even order contribution of
the perturbation will be cancel out by adding u.(p’,q’ ;1)
and uzp’,q’;t), the inverted method is quite efficient at
calculating the third-order response functions.

C. Forward and backward propagations

Equations (2.7)—(2.12) indicate that the response func-
tion can be obtained from the separately calculated doorway
and window functions for any p’ and q’. First, we consider
W tr+13;p",q") and D, (p’.q’;t,), which are both in the
second order of the dipole interactions. As explained above,
W, (tr+13;p’,q") is evaluated by the NEMD simulation
from two nonequilibrium trajectories in phase space that start
from initial values p’ and q’ in a uniform distribution and
evolve forward in time for the perturbed Hamiltonians H (7)
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and H(7). Accordingly, the doorway function D ,(p’,q’ ;1)
is calculated from the nonequilibrium trajectories that start
with initial values p, and q, in the equilibrium distribution
and propagate forward in time for the Hamiltonians H,(7)
=H-E,u(q)8(7—1t,) and H;(7)=H+E,u(q) 8(7—1,) after op-
erating the first pump excitation denoted by ifi;;(q)/%. Alter-
natively, we can evaluate the doorway function using the
trajectories corresponding to the backward propagation in
time. This can be done without considering the phase-space
compression factor since we do not have any dissipation pro-
cesses and the system dynamics is time reversible.””® We
rewrite Eq. (2.8) as

D,(p'.q":1) EffdponOPeq(Po,QO)

0
qu(q’)exp[ deLw(p’,q’;r)}
t

1

X fin(q)8(po-p)d(Ao-q').  (2.16)
The initial state of the backward trajectories p’ and q’ are in
the uniform distribution. After operating the second pulse
ifiy(q)/%i to the initial state, we calculate the equilibrium
and nonequilibrium trajectories from time #; to O for the
Hamiltonians  Hy(7)=H+E,u(q)8(r) and H,(7)=H
—E, u(q)8(7) backward in time. The final state, which is the
initial equilibrium state in the forward case, is defined by
integration over p, and q, with the weight function
P(py.qo)-

As Eq. (2.11) indicates, we need to generate trajectories
from a sampling point in the uniform distribution of (p’,q’).
In practice, however, we do not have to generate points of
(p’.q’) that are far from the equilibrium distribution
P(p’,q’). This is because the trajectories from those points
give very small contributions to D, (p’.q’;t;) due to the
factor P*d(p’(~t,),q'(~t,)), where (p'(0),q'(0))=(p’.q’)
and (p’(-t;),q'(~f;)) are the backward trajectories from ¢
=0 to t=—t, for the perturbed Hamiltonians H,(7) and Hx(7)
with the second pump excitation. Thus, instead of using uni-
form distribution for (p’,q’), we can generate the trajecto-
ries from the sampling points in the equilibrium distribution
P*(p’,q’) and calibrate the weight of probability by multi-
plying exp[BE(p’,q’)], where E(p’.q’) is the total energy
of molecules for the configuration (p’,q’). In this scheme,
Eq. (2.11) is rewritten as

R(t3,t2,t1)=fdp’dq’Wbcd(tz+t3;p’,q’)Peq(p’,q’)
XD;(p/aq,;tl)7 (217)

where

D(p',q';1;) =P *" 9D (p',q";1,). (2.18)
The classical doorway function for the canonical distribution

is expressed as
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1 Jexpl- BAH(p'.q";—1))]
D,(p'.q";1) = ”
2E At V4

_expl- BAH;(;’,q’;— tl)]}’ (2.19)

where AH=H%(p,q;-t,)-H’(p,q;0) is the work done to
the molecular system by the first laser interaction, and Z“ and
7% are the partition functions for H(p,q;—t,) and H%(p,q;
—t,), respectively. Since we have the relation

AHa(p/,q/;_ tl) ~ E pi(_ tl) {91(1’(_ tl)

E At
m aqz('a)(_tl) ¢

= u(-1,)E At, (2.20)

by expanding Eq. (2.19) in terms of laser interactions and by
collecting the terms in the order of E,, we can obtain the
simple expression

! ! ! B . ! ! 1
D,(p'.q ;tl)z—g a(p'.q ;—t])—g dpdq

Xexp[— BH"(p,q;0)](p.q;— tl)},
(2.21)

which enables us to calculate the doorway function from
equilibrium trajectories. This expression is convenient to cal-
culate the two-dimensional third-order response function.
The window function in Eq. (2.17) is expressed as

1
)Z{Mbc(P’,Q’ ih+t3)

Widta+t3:p".q' ) =~ ————
pea(t2 +13:p".q") 4E,E (Af

+ wpe(p'q" s+ 13) = i (p'.q" 512

+13) — wpe(p’.q" st + 13)}, (2.22)

and the response function is evaluated as

R(t3,15,1)) = (ty+ 1) + ppety + 15)

-B
4EbE (At)2<{ILLbL
— ety + 13) — ppty + 13)}

XAﬂ(_ tl»NVT,adiabatic’ (223)

where (A(2))yyr adiabaic denotes the average value of the func-
tion A() in initially the canonical and then the adiabatically
evolving ensemble and Az(~t,) = fu(=1)) = ((=t1)) Ny adiabatic:
This expression is equivalent to the equilibrium and nonequi-
librium hybrid MD method developed to simulate fifth-order
two-dimensional Raman spectroscopy.56

Alternatively, we can rewrite Eq. (2.11) as

1
R(fs,lz,l1)=<2EA [ty + 13) = Mc(l2+f3)]{2E A
b

Ls(=11) ﬂ;(—tl)]+ﬂzﬂ(—t1)ﬂ(0)}>
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R(t3,15,11) = f dp'dq'W,.(t,+13:p'.q")

XP(p’,.q")D,,(p".q":1)), (2.24)

where D!, (p’.q':1;)=ePE® 9D, (p’.q’:1,). The classical
doorway function in Eq. (2.24) is written as

1 exp[_ BAHah(p,,q,s_t])]
4EE,(Ar)? 7

D, (p'.q';t) =

eXP[ BAHT(p'.q'—1))]
Zab

_exp[= BAH(p.q',~ 1)]
b

exp[- BAH™(p',q’,— 1))]
- 7ab

, (2.25)

where AH®=H(p,q;-t,)-H’(p,q;0) is the work done to
the molecular system by the first and second laser interac-
tions and Z% is the partition function for H*(p’,q’,~t,).
Using the relation

- E Iﬂ du(0)

ab
AT U (1)

E, At

a(=1) 0 t
Pz,b( 1) ,L(le;)( 1) E,Al
m (= 11)

i

= AO)E,AL + iy (~ 1))E,At, (2.26)

and expanding Eq. (2.25) to collect the terms in the order of
E E,, we obtain

1
D, (p'.q'; t1)~—{ﬁ(ub(p .q'—1) = ip(p'.q’;

-t)+ B up’.q’ ;- tl)ﬂ(p',q’;O)}

1
-x dpdq{ 2Ebi (fp(P.q:— 1))
—ﬂE(P,q;—tl))"‘,B ﬂ(p7q;_tl)

Xﬂ(p,q;O)}eXP[— BH (p,q;0)].

(2.27)

The corresponding classical window function is given by Eq.
(2.15). Then, the response function is expressed as

NVT,adiabatic

1
<2E A[,U«c(fz"'fs) M“(t2+t3)]>madlabm<2EbA [p(—11) = (= 1)1+ B2a(- tl)M(O)>NVT,adiabaﬁc~ (2.28)

Downloaded 14 Feb 2008 to 130.54.50.111. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



064511-6 T. Hasegawa and Y. Tanimura
@ B B
Hape @)
Hoge (D)
H5 (0
A

uy (t)iq
yE,:(t) (.:
pr DI

A L 4

®)
Hy (1)

e @ \ | o]
< 5 ot
4,(0) € ) | exp[-pAH?)
s, (0) '
t3 tZ : tl
(C) E E’ Ea
exp[—fAH ]

<
( expl-pAH ]

exp[~fAH™]
x

exp[-AAH )

t3 - z2 tl

FIG. 1. The simulation processes are illustrated. The thick lines correspond
to adiabatic NEMD trajectories. The dotted lines correspond to equilibrium
NVE (constant energy) trajectories. White circles are the initial configura-
tions of the adiabatic NEMD calculations. The dotted lines or equilibrium
trajectories should be generated from canonical ensembles. The exponential
terms can be calculated by the time derivative of the dipole moment [Egs.
(2.22) and (2.27)]. (a) Conventional NEMD method. Eight NEMD trajecto-
ries are used to extract the third-order response from the total response. (b)
The simulation process using Eq. (2.22). Four NEMD trajectories and one
equilibrium trajectory are employed. (c) The simulation process using Eq.
(2.27). Two NEMD trajectories, two backward NEMD trajectories, and one
equilibrium trajectory are used. The trajectory in the 7, period corresponds to
the equilibrium one.

This expression is convenient to calculate the 3D third-order
response function. The number of necessary nonequilibrium
simulations for the third-order response function depends on
the calculation schemes. The simulation processes for the
conventional NEMD method and the developed two schemes
are schematically illustrated in Fig. 1. Notice that the second

300
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term in Eq. (2.28) will vanish if we sample the whole phase
points because this term arises from the difference between
the partition functions involved in Eq. (2.28). To obtain ac-
curate signals from the finite number of the phase points, we
need to include this term.

In the next section, we examine the accuracy and effi-
ciency of our approach by calculating the 2D and 3D signals
for liquid hydrogen fluoride.

lll. TWO-AND THREE-DIMENSIONAL IR SIGNALS
OF HYDROGEN FLUORIDE LIQUID

A. Computational details

To simulate 2D and 3D IR signals for liquid hydrogen
fluoride, we used the FF(64,0.78) intermolecular potential
expressed in the Chebyshev expansion form.** The Ewald
method was used for the long range Coulomb interactions.
The simulation was carried out with 64 HF molecules. The
total dipole moment was calculated by the first-order dipole-
induced-dipole approximation and the dipole moment and
the molecular polarizability were taken from experimental
values.””" The simulation box was a 1.29 nm? and the short
range forces were cut off at the half length of the simulation
box. The equations of motion were solved by the velocity-
Verlet integrator of rigid bodies’*"” with the time step of
0.1 fs for canonical (NVT) calculations and 2 fs for micro-
canonical (NVE) calculations. The Nose-Hoover chain with
20 thermostats was used to generate the NVT ensemble. The
NVT simulations were performed at 273 K. We set EA¢
=1.0X107° Vm's in the NEMD calculations. The laser
fields are applied during very short time step of Ar=1.0
X 107 fs to obtain the impulsive responses. We first made
3 X 10* temporary configurations from a NVT trajectory at
4 ps intervals in order to prepare the NVT ensemble. We then
took fragments of the 4 ps NVE trajectory from the tempo-
rary configurations after 4 ps equilibrations. The initial con-
figuration of the NEMD calculations was sampled at 4 fs
intervals from each fragment of the trajectories. Then, the
signals were calculated by averaging over the 3 X 107 initial
configurations.

B. The accuracy and efficiency of the simulation

First, we compared the accuracy and efficiency of third-
order 2D IR signals for fixed #,=0 calculated from the two

250

FIG. 2. (Color) The time domain third-order response
function R___(1,,0,#;) for liquid HF at #,=0 fs. Panels
(a) and (b) are calculated from Egs. (2.22) and (2.27),
respectively. The signal strengths are normalized by the
peak strength of the signal in panel (a).

0 50 100 150 200 250 300 0 50 100 150 200 250 300
T Taa
t1 / fS -1 -0.5 o 0.5 1
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FIG. 3. (Color) The difference in the third-order response functions calcu-
lated from Egs. (2.22) and (2.27).

different schemes of the doorway and window decomposi-
tions. The first scheme is expressed as Eq. (2.23) and is
based on the decomposition before the second pump excita-
tion, while the second scheme is expressed as Eq. (2.28) and
is decomposed after the second pump excitation. We calcu-
lated the third-order response functions for all parallel polar-
ization R___(#,,0,1;) based on the two schemes. The results
of the first and second schemes are given in Figs. 2(a) and
2(b), respectively. The signal profiles and strength are almost
the same. However, there are some disagreements in the re-
gion #3> 150 fs, which is depicted in Fig. 3 as the difference
between the two profiles. This is because the signal from the
first scheme converges slower than that from the second
scheme in the region of #;<<50 fs. In the first scheme, the
window function is defined by the second-order difference of
the dipole moment, so that the true signal is very weak com-
pared to the thermal fluctuation noise in the region of #3
>150 fs and the signal converges slower in the first scheme
than the second scheme in this region.

- ) t,= 20 fs

@h,=01s

150
100 P)

50

200

©1,= 300 fs

(@ t,= 200 fs

t, /I fs

150

100
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The second scheme allows us to calculate the 3D signals
for different 7, much faster than the fast scheme. This is
because the second scheme uses equilibrium trajectories in
the t, period and we can calculate the third order responses
for different #, by choosing pairs of initial configurations on
one NVE fragment for the doorway and window functions.
In the first scheme, however, we need to repeat the NEMD
calculation for each 7, to have 3D signals as a function of 7,
1, and f3.

C. The time-domain and frequency-domain signals

Figures 4(a)-4(f) illustrate the time-domain 2D IR sig-
nals for liquids HF with all parallel polarizations. The oscil-
lations of the period of 60 fs are induced by the intermolecu-
lar vibrational motions of the hydrogen bonds. The signal
profile in Fig. 4(a) resembles the 2D IR signal calculated
from Gaussian-Markovian Fokker-Planck equation with a
linear-linear (LL) and square-nonlinear (SL) system-bath
couplings.26’28’76’77 The conventional Brownian oscillator
model considers the LL interaction which describes the
damping and thermal activation processes of the Langevin
dynamics. The SL interaction changes the curvature of the
system potential,78 which in turn causes the vibrational
dephasing process. Analogous to the case of electronically
resonant spectroscopy, LL interactions induce the longitudi-
nal (T,) and transverse (T,) relaxations, whereas SL interac-
tions induce similar effects as the inhomogeneous
broadening.26 Figure 4(a) exhibits similar profiles, as shown
in Fig. 15(v) of Ref. 26, which corresponds to a slow modu-
lation (inhomogeneous) case of an anharmonic Brownian os-
cillator system. The phase difference of the signals in Fig.
4(a) and Fig. 15(v) in Ref. 26 may be attributed to the non-
linear coordinate dependence of the dipole moment of liquid
hydrogen fluoride. The echo like profile along #; =13 vanishes
around #,=200 fs, which is the same order as the noise cor-
relation time estimated from the results of the LL+SL model
[Fig. 15(v) in Ref. 26] as 1/y=1/(0.1w,) = 500 fs.

(@ t,= 100 fs|

FIG. 4. (Color) The time domain
third-order response functions
R_..(t).t,13) at (a) £,=0fs, (b) 1,
=20 fs, (c) 1,=100 fs, (d) 7,=200 fs,
(e) 1,=300 fs, and (f) £,=400 fs calcu-
lated from Eq. (2.27). The signal
strengths are normalized by peak
strength of the original signal shown
in (a).

®1,= 400 fs

o 50 100 150 200 0 50 100 150 200 O 50 100 150 200
T Taa
t1 / f S -1 0.5 o0 0.5 1
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We next present the frequency domain correlation spec-
tra for different #, to discuss the role of dephasing and an-
harmonicity on the vibrational modes.'**! We calculated the
correlation spectra in the following procedure. First we have
performed a 3D Fourier transformation of the signal with all
parallel polarization in #;, ,, and #;. We then took the signal
only in the range of w, <200 cm™! and reconverted it into a
time domain in #,. The correlation spectra was obtained by
adding the imaginary part of (w;,w;)=(+,+) quadrant and
(w;,w3)=(—, +) quadrant. Figures 5(a)-5(f) show the corre-
lation spectra with the waiting time #,=0, 20, 100, 200, 300,
and 400 fs, respectively. In each figure, we see a positive
peak around (o, w3)=(550,550) cm™' corresponding to the
vibrational coherence from the fundamental oscillation, and
a negative peak around (w;,w;)=(550,400) cm™' corre-
sponding to the vibrational coherence from an anharmonic
oscillation. These peaks are induced by the vibrational mo-
tion of the hydrogen bonds network in the liquid HF. The
width of the peak at (o, w;)=(550,550) is about 50 cm™!
and is much narrower than the inhomogeneous linewidth ob-
served in liquid water.”’ This is due to the formation of the
strong hydroGgen bonds and one-dimensional character of HF
molecule.*** This narrow band feature is also supported by
the recent neutron scattering experiment.

As expected for intermolecular vibrational motions, a
large anharmonicity (=150 cm™!) is observed. Since we ne-
glected the intramolecular vibrational motion of HF, no en-
ergy transfer take place between the intermolecular and in-
tramolecular motions. To have effects from intramolecular
motions, one has to employ a multibody intramolecular po-
tential instead of a simple harmonic potential.65 In addition,
since quantum effects may play some roles in the high fre-
quency intramolecular vibrational mode, one has to involve a
quantum correction in the simulations. These two challeng-
ing tasks are left for further studies.

IV. CONCLUSIONS

The present paper describes a methodology to efficiently
calculate the signals of 2D and 3D third-order IR spec-

200 400
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©f,=10071s

FIG. 5. (Color) The correlation spec-
tra of liquid HF at (a) 1,=0 fs, (b) 1,
=20 fs, (c) 1,=100 fs, (d) £,=200 fs,
(e) 1,=300 fs, and (f) 7,=400 fs.

troscopies by means of the NEMD simulation. The key fea-
tures of this approach are the doorway-window decomposi-
tion of the response function and the backward-forward
sampling of the NEMD trajectories. The efficiency and ac-
curacy of the simulation were tested to calculate 2D and 3D
IR signals of liquid HF using two different schemes of the
doorway-window decompositions. The scheme represented
by Eq. (2.28) makes the calculation of 3D IR signals more
efficient than the conventional NEMD method and the
scheme represented by Eq. (2.23). Using the scheme repre-
sented by Eq. (2.28), we calculated the 3D signals for differ-
ent 7,. The calculated signal exhibits vibrational dephasing
within a correlation time of 7=~200 fs, which may be de-
scribed by an anharmonic Brownian oscillator model with
linear-linear and square-liner system-bath couplings. The an-
harmonicity of intermolecular vibrational modes was also
confirmed by the frequency domain correlation spectra. We
presented the efficient algorithm to calculate the 3D IR sig-
nals for the intermolecular vibrational motions, without in-
cluding the intramolecular contribution. The developments
of the multibody intramolecular potential and the calculation
strategy of the quantum corrections are necessary for further
studies.
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