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We performed simulations of the prototypical femtosecond “double-slit” experiment with strong
pulsed laser fields for a chromophore in solution. The chromophore is modeled as a system with
two electronic levels and a single Franck-Condon active underdamped vibrational mode. All other
(intra- and inter-molecular) vibrational modes are accounted for as a thermal bath. The system-bath
coupling is treated in a computationally accurate manner using the hierarchy equations of motion
approach. The double-slit signal is evaluated numerically exactly without invoking perturbation the-
ory in the matter-field interaction. We show that the strong-pulse double-slit signal consists of a
superposition of N-wave-mixing (N = 2, 4, 6. . . ) responses and can be split into population and
coherence contributions. The former reveals the dynamics of vibrational wave packets in the ground
state and the excited electronic state of the chromophore, while the latter contains information on
the dephasing of electronic coherences of the chromophore density matrix. We studied the influ-
ence of heat baths with different coupling strengths and memories on the double-slit signal. Our
results show that the double-slit experiment performed with strong (nonperturbative) pulses yields
substantially more information on the photoinduced dynamics of the chromophore than the weak-
pulse experiment, in particular, if the bath-induced dephasings are fast. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4832876]

I. INTRODUCTION

In 1991, Scherer and co-workers1, 2 reported on a pioneer-
ing femtosecond “double-slit” experiment in the gas phase.
They used two phase-locked pump pulses to excite molecu-
lar iodine into its B state and measured the total fluorescence
from this state as a function of the time delay between the two
pulses. Although the signal yields the total electronic popula-
tion of the B state and, as such, is incoherent, the informa-
tion about the evolution of electronic coherences of the iodine
density matrix is imprinted into it through the relative phase
of the pulses. Similar experiments were later performed for
alkali atoms (see the reviews 3–5) and for molecular species,
both in the gas phase6, 7 and in the condensed phase.8 These
experiments can be viewed as realizations of Ramsey-type
spectroscopy 9–11 or wave-packet interferometry.3–5

The double-slit experiment of Scherer et al.1, 2 was per-
formed with weak pulses. The measured signal is, therefore,
related to the linear response function of the material system.
Despite the apparent advantage of the detection of interfero-
grams as oscillatory transients in the time domain, the infor-
mation content of this experiment is similar to that provided
by linear absorption spectroscopy.12–14

Subsequent generalizations of the double-slit experiment
have been developed along two major directions. The first em-
ploys multiple phase-locked pulses and constitutes the field of
multi-pulse wave-packet interferometry.3–5 The second direc-
tion, double-slit interferometry with strong laser pulses, is the
focus of the present paper. A “strong” pulse is defined here as
a laser pulse which causes a significant depopulation (popu-
lation) of the initial (final) electronic state. The strength crite-

rion thus depends not only on the laser intensity but also on
the oscillator strength of the transition and the detuning of the
carrier frequency from the electronic transition.

It was shown theoretically and demonstrated experimen-
tally for electron wave packets in atoms that strong-field
double-slit signals not only exhibit high-frequency oscillatory
responses corresponding to transitions between the ground
state and two excited states (three-level system) but also ex-
hibit a slower beating with the frequency corresponding to
the energy difference between the two excited states.14–16 The
latter beating is absent in linear response and is, therefore, a
characteristic feature of the strong-field regime.

The reviews3, 17 summarize recent progress in strong-
pulse interferometry and control. The strong-field double-
slit phenomenon is also the key to femtosecond single-
molecule spectroscopy18, 19 and control.20 In Refs. 21 and 22
it was shown that a whole series of nonlinear N-wave-mixing
(4WM, 6WM, . . . ) measurements can be performed with a
single double-pulse setup, using the pulse strength for the am-
plification of 6WM and higher-order contributions to the mea-
sured signal. Experiments with strong phase-locked pulses
may yield more information on the dynamics of the material
system than traditional linear or weak-pulse 4WM spectro-
scopies. On the other hand, the complexity of the responses
induced by multiple strong laser pulses makes the interpreta-
tion of the signals difficult and requires theoretical support.

In the present work, a comprehensive theoretical study of
the prototypical double-slit experiment has been performed,
considering a model of a photochemically nonreactive chro-
mophore in a dissipative environment. In the simulations of
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the double-slit signal we have avoided several commonly
used approximations, notably the assumption of weak laser-
matter interaction, the weak system-bath coupling approxima-
tion, and the Markovian approximation. Starting from generic
system-bath and system-field interaction Hamiltonians, the
signals are computed numerically accurately using the hi-
erarchy equation of motion (HEOM) method.23–26 We have
systematically studied how heat baths with different coupling
strengths and memories affect the signal.

The outline of the article is as follows. We start by in-
troducing the appropriate Hamiltonian (Sec. II) and providing
the theoretical expression for the double-slit signal (Sec. III).
In Secs. IV and V, we discuss two approximate methods of
the calculation of the signal, which are based on the pertur-
bative treatment of the system-field interaction (Sec. IV) and
the strong-pulse doorway-window (DW) picture (Sec. V). In
Secs. IV and V we develop a qualitative description of the
double-slit signal. The actual calculations are performed with
the HEOM method as detailed in Sec. VI. The results of these
calculations are reported and discussed in Sec. VII. The con-
clusions are given in Sec. VIII.

II. THE HAMILTONIAN

We consider a chromophore immersed in a solvent. In
the strong-pulse double-slit experiment, two resonant phase-
locked pulses induce multiple transitions between the elec-
tronic ground state, g, and the lowest bright excited electronic
state, e, of the chromophore. For simplicity and clarity, the lat-
ter is assumed to possess a single harmonic Franck-Condon
(FC) active vibrational mode, which is included in the pri-
mary system. All other vibrational modes of the chromophore
and the solvent are treated as a harmonic heat bath. The total
Hamiltonian of the material system is thus expressed as27

ĤM ≡ ĤFC + ĤB + ĤSB, (2.1)

where

ĤFC =
∑
k=g,e

|k〉
(

1

2
¯�[P 2 + (Q − �k)2] + εk

)
〈k| (2.2)

and

ĤB + ĤSB =
∑

α

∑
k=g,e

|k〉
(

1

2
¯ωα

[
p2

α + (
qα − �α

k

)2]) 〈k|.

(2.3)
Here, the bra-ket notation is used to denote the electronic
states. Q, P, and � are the dimensionless normal coordi-
nate, momentum, and frequency of the FC mode, whereas qα ,
pα , and ωα are the coordinate, momentum, and frequency of
the αth bath mode. The dimensionless displacement of the
FC mode is denoted by �e, while the displacement of the
αth bath mode is denoted as �α

k (for simplicity, we set �g

= 0 and �α
g = −�α

e ). εe is the vertical electronic excitation
energy (εg = 0).

In the present work, we are interested in the dynamics
of the primary system on the timescale of several vibrational
periods 2π /� of the system mode. The bath gives rise to pure
electronic dephasing due to the modulation of the energy gap
between the electronic ground state and the excited state of

the chromophore. To describe the bath-induced dephasing, it
is convenient to incorporate the energies

∑
α ¯ωα(�α

e )2/2 into
εe and rewrite the bath Hamiltonian as

ĤB + ĤSB =
∑

α

{
1

2
¯ωα

(
p2

α + q2
α

) + cαqαV̂

}
, (2.4)

where V̂ = |e〉〈e| − |g〉〈g| and cα = −ωα�α
e . The influence

of the bath on the system dynamics is fully determined by its
spectral density

J (ω) =
∑

α

c2
α

2mαωα

δ(ω − ωα). (2.5)

The Hamiltonian specified by Eqs. (2.1)–(2.5) does not in-
clude a direct coupling of the system mode Q with the
bath modes qk, since our intention is to model an under-
damped bath mode. A bilinear coupling of the system mode
with the bath modes could be included in the Hamiltonian
if this should be necessary for the simulation of a specific
experiment.

The interaction of the chromophore with the laser pulses
can be written in the rotating-wave approximation (RWA) and
in the Condon approximation as follows (see Ref. 28 for a
discussion of the validity of the RWA for moderately strong
pulses):

ĤF (t) = − λpX†(E(t)ei(φ1−ωpt) + E(t − τ )ei(φ2−ωp(t−τ ))) + H.c.

(2.6)

Here,

X = |g〉〈e|, X† = |e〉〈g| (2.7)

is the electronic transition operator, λp is given by the dot
product of the laser field amplitude and the transition dipole
moment, ωp is the carrier frequency of the pulses, φ1 and φ2

are their phases, and E(t) is the pulse envelope.
The total (chromophore + solvent) dynamics driven by

the laser field is described by the Liouville–von Neumann
equation,

∂

∂t
ρ̂tot (t) = − i

¯
Ĥ×

tot (t)ρ̂tot , (2.8)

where

Ĥtot (t) = ĤM + ĤF (t) (2.9)

is the total Hamiltonian and

Â×ρ̂ = Âρ̂ − ρ̂Â

for any operator Â. The reduced density matrix, defined as

ρ̂(t) ≡ TrB{ρ̂tot (t)} =
∑

k,n=g,e

|k〉ρkn(t)〈n|, (2.10)

is the key object for the evaluation of the signal. The HEOM
method permits the exact evaluation of ρ̂(t) (see Sec. VI).

The chromophore + solvent Hamiltonian defined by
Eqs. (2.1), (2.2), and (2.4) can be regarded as a generalized
spin-boson Hamiltonian, that is, all vibrational modes couple
linearly with the electronic system. A bilinear coupling of the
system mode with the bath modes, which would lead to en-
ergy relaxation of the system mode, is not considered here,
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but could be taken into account within the Brownian oscilla-
tor model27 and treated with the HEOM method.29–31 Using
the bath Hamiltonian (2.4), we can study bath-induced pure
dephasing of the density matrix, which is not “contaminated”
by vibrational energy relaxation of the system mode.

III. DOUBLE-SLIT SIGNAL AND NONLINEAR
POLARIZATION

As observable, we consider the integral fluorescence
from the excited electronic state, e, as a function of τ , the
time delay between the two pump pulses. This signal is pro-
portional to the population of the excited electronic state after
the interaction with both laser pulses:

S(τ ) = 〈|e〉〈e|ρ̂(t → ∞)〉 , (3.1)

where the reduced density matrix ρ̂(t) is defined by Eq. (2.10)
and angular brackets indicate the trace over the degrees of
freedom of the primary system.

The signal can alternatively be expressed through the to-
tal complex nonlinear polarization

P (t) = 〈X†ρ̂(t)〉 (3.2)

as follows:

S(τ ) = −2Im
∫ ∞

−∞
dtE(t − τ )ei(φ2−iω(t−τ ))P (t). (3.3)

(See Refs. 1 and 12.) Equation (3.3) can be derived by the
multiplication of both sides of Eq. (2.8) by |e〉〈e|, formal in-
tegration over time from −∞ to ∞, and taking the trace.
Equation (3.3) is reminiscent of the formula for the intensity
of the integral transient absorption pump-probe signal,27 but
differs from it in two respects. (i) P(t) is the total, rather than
the phase-matched, polarization, and (ii) P(t) is the nonlinear
polarization which contains all possible contributions in the
system-field interaction. As we will see, these two facts have
interesting consequences.

Since we are interested in the short-time behavior of the
signal (on a timescale of several vibrational periods of the
FC-active mode), we can safely neglect the reorientation dy-
namics of the chromophore. To perform the ensemble aver-
age over the orientation of the chromophore, λp should be re-
placed by λp cos (ϑ) in Eq. (2.6), where ϑ is the angle between
the direction of the polarization vector of the pump pulses and
the transition dipole moment. This renders the signal explic-
itly ϑ-dependent, S(τ , λp cos (ϑ)). The ensemble-averaged
signal is then given by the expression32

S̄(τ ) = 1/2

1∫
−1

dxS(τ, λpx), (3.4)

where x ≡ cos (ϑ). According to the mean-value theorem, the
integral in Eq. (3.4) can be formally evaluated as

S̄(τ ) = S(τ, λpx̄), (3.5)

where −1 ≤ x̄ ≤ 1 is a certain (unknown) value of x. Thus,
ensemble averaging over molecular orientations is equivalent
to a renormalization of the pulse strength, λp → λpx̄. Since

the value of x̄ is unknown, orientational averaging is a nui-
sance for coherent control studies (see, e.g., Refs. 18 and 33),
but is not a severe problem for the simulation and interpreta-
tion of double-slit experiments.

IV. PERTURBATIVE DESCRIPTION

It is insightful to consider the expansion of the signal in
powers of the pulse strength λp,

S(τ ) =
∞∑

n=1

λ2n
p Sn(τ ). (4.1)

In principle, the total Hamiltonian Ĥtot (t), defined as
the sum of the Hamiltonians (2.2), (2.4), and (2.6), permits
the evaluation of any Sn(τ ).34, 35 However, the expressions
for higher-order contributions are rapidly becoming cumber-
some. In the leading order, we have

S1(τ ) = σ1(τ ) + σ1(−τ ) + 2σ1(0), (4.2)

where

σ1(τ ) = −2Re
∫ ∞

−∞
dt

∫ ∞

0
dt1E(t − τ )E∗(t − t1)ei(ωpτ+�φ)

× e−i(ωp−εe/¯−��2
e/2)t1−g(t1), (4.3)

�φ ≡ φ2 − φ1, and g(t) ≡ g(−t) is the lineshape function.27

For the Drude spectral density (see Sec. VI below), g(t) can be
evaluated analytically (see Appendix A). For delta-function
pulses with �φ = 0, Eq. (4.3) yields

S(τ ) ∼ Re e−i(εe/¯+��2
e/2)τ−g(τ ) + const, (4.4)

which reveals that S(τ ) oscillates with the frequency
≈εe/¯ ≈ ωp.

In the frequency domain, Eq. (4.3) yields∫ ∞

−∞
dτeiωτ [S1(τ ) − 2σ1(0)] = −2|E(ω)|2I (ω), (4.5)

where

I (ω) = Re
∫ ∞

0
dτei(ω−εe/¯−��2

e/2)τ−g(τ ) (4.6)

is the linear absorption spectrum. For weak pulses (i.e., in the
leading (linear) order in λp), the Fourier transform of S(τ )
yields, therefore, the linear absorption spectrum multiplied by
the spectral intensity of the pulses (cf. Refs. 1, 2, and 12).

While it is possible to explicitly write down higher-order
contributions to Eq. (4.1) (see, e.g, Ref. 36 for the third-order
description of the experiment of Ref. 1), the expressions are
cumbersome and knowing them explicitly is of little value for
the present discussion. Note that S2(τ ), for example, contains
not only the terms contributing to the corresponding third-
order pump-probe signal (i.e., terms quadratic in the ampli-
tudes of the pulses #1 and #2) but also terms which are, for
example, linear in the amplitude of pulse #1 and cubic in
the amplitude of pulse #2. In general, the n-order terms con-
sist of a time-independent background and a time-dependent
response. The existence of a field-dependent background is
common for strong-pulse signals (see, e.g., Refs. 16 and 37).
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Experimentally, one can get rid of the background signal by
applying phase cycling (cf. Refs. 21 and 22).

V. DOORWAY-WINDOW PICTURE

The doorway (D)–window (W) representation of optical
third-order spectroscopy has been introduced by Yan, Fried,
and Mukamel.27, 38, 39 It was further developed towards pulses
of arbitrary strength in Ref. 40. If the two pump pulses are
temporally well separated, the double-slit signal could, in
principle, be calculated within the strong-pulse DW approxi-
mation. While the DW approximation becomes exact for non-
overlapping pulses and the isolated chromophore, this is not
necessarily true for the chromophore in solution due to the fi-
nite memory induced by the coupling of the chromophore to
the bath. Since the validity of the DW approximation is not
guaranteed for non-Markovian open systems,32, 41 we did not
use it in the actual calculations. The DW approximation is
useful, however, for the qualitative interpretation of the sig-
nals computed with the HEOM method.

As is explained in Appendix B, the strong-pulse double-
slit signal consists of population and coherence contributions,

S(τ ) = S(p)(τ ) + S(c)(τ ). (5.1)

The population part S(p)(τ ) reflects the dynamics of vibra-
tional wave packets in the g and e states,

S(p)(τ ) = Im
〈
WggGgg(τ )Dgg + WeeGee(τ )Dee

〉
. (5.2)

Here and below Gkn(τ ) ≡ 〈k|G(τ )|n〉, k, n = g, e, is the field-
free evolution operator of the primary system. Dkk is the door-
way operator (generating the wave packet prepared by the
pulse #1) and Wkk is the window operator (generating the
wave packet prepared by the pulse #2), see Appendix B for
details. S(c)(τ ) describes the time evolution of the coherence
between the g and e states:

S(c)(τ ) = Im
〈
WgeGeg(τ )Dege

iωpτ + WegGge(τ )Dgee
−iωpτ

〉
.

(5.3)
Equations (5.1)–(5.3) emphasize the double-slit character

of the signal. Indeed, S(p)(τ ) represents the sum of the intensi-
ties arising from the g and e states. This contribution yields the
strong-pump strong-probe signal considered in Refs. 40 and
42 and does not require phase-locked pulses. In the present
case, it exhibits beatings due to vibrational wave-packet mo-
tion of the underdamped FC-active mode. The coherent part
S(c)(τ ) describes the interference of the signals arising from
the g and e states. It reflects the evolution of electronic co-
herences and vanishes when the two pump pulses are not
phase-locked. S(c)(τ ) exhibits fast oscillations with the optical
frequency ωp, depends on the phase difference �φ between
the pulses (see Eqs. (B4) and (B5)), and is sensitive to the
bath-induced dephasing.

VI. SIMULATION OF THE SIGNAL
WITH THE HEOM METHOD

The dynamics of the primary system and the double-slit
signal (Eq. (3.1)) are described by the reduced density ma-

trix ρ̂(t) (Eq. (2.10)), which is obtained from the total den-
sity matrix by tracing out the bath degrees of freedom. In the
present work, we employed the Drude spectral distribution for
the bath oscillators,

J (ω) = λ2

π

γω

γ 2 + ω2
. (6.1)

Here, λ2 determines the strength of the system-bath cou-
pling and γ is a measure of the width of the spectral den-
sity distribution. For this bath, ρ̂(t) can be evaluated with
the HEOM method, which takes account of non-Markovian
effects and nonperturbative system-bath interactions at finite
temperature numerically accurately.23–26 The HEOM method
has been used to study linear and nonlinear spectroscopy,43–46

quantum information,47–49 exciton transfer,50–54 and electron
transfer.29–31, 55 For the present application, it is crucial that
the interaction of the system with a time-dependent external
field can be added while taking the system-bath quantum en-
tanglement into account through the hierarchy elements.56

The symmetric and antisymmetric bath correlation func-
tions for the Drude spectral density (6.1) are given in
Appendix A, see Eqs. (A11) and (A12). For the application
of the HEOM method to the present problem, we approxi-
mate the symmetric bath correlation function with negligible
error at the desired temperature 1/β¯ as

C2(t) ≈ λ2γ

{
1

2
cot

(
β¯γ

2

)
e−γ t + 2

β¯

K∑
k=1

νk

ν2
k − γ 2

e−νkt

}

+ λ2

(
1

γβ¯
− cot

(
β¯γ

2

)
− 2γ

β¯

K∑
k=1

1

ν2
k − γ 2

)
δ(t).

(6.2)

This approximation is equivalent to assuming that the Mat-
subara times, ν−1

k , are shorter than all relevant system times
for k > K, so that νkexp (−νkt) ≈ δ(t). K is the cutoff of the
sum over the Matsubara frequencies in Eq. (6.2).

According to Refs. 23–26, the HEOM method is for-
mulated as follows. We denote the number of the hierarchy
elements corresponding to exp (−γ t) in Eq. (6.2) as n and
the number of the hierarchy elements corresponding to the
kth Matsubara exponential exp (−νkt) in Eq. (6.2) as jk. The
HEOM equations are then written as

∂ρ̂
(n)
j1···jK

(t)

∂t
= −

[
i

¯
Ĥ×(t) + nγ +

K∑
k=1

jkνk + �̂

]
ρ̂

(n)
j1···jK

(t)

+ V̂ ×ρ̂
(n+1)
j1···jK

(t) + n�̂ρ̂
(n−1)
j1···jK

(t)

+
K∑

k=1

V̂ ×ρ̂
(n)
j1···,jk+1,···jK

(t)

+
K∑

k=1

jkνk�̂kρ̂
(n)
j1···,jk−1,···jK

(t). (6.3)

In these equations,

Ĥ (t) = ĤFC + ĤF (t) (6.4)
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is the Hamiltonian of the driven primary system,

�̂ = iλ2γ

2

[
−iV̂ ◦ + cot

(
β¯γ

2

)
V̂ ×

]
, (6.5)

�̂k = i
2λ2γ

β¯

νk

ν2
k − γ 2

V̂ ×, (6.6)

Â◦ρ̂ = Âρ̂ + ρ̂Â for any operator Â and �̂ = −iV̂ ×∑∞
k=K+1 �̂k . The HEOM consists of an infinite number of

equations, but they can be truncated at finite order with neg-
ligible error.23–26 Essentially, the condition necessary for the
error introduced by the truncation to be negligibly small is
that the total number of hierarchy elements or the total num-
ber of Matsubara frequencies retained be sufficiently large.
Explicitly, it can be shown that the condition nγ + ∑K

k=1 jkνk

� max{�, λp}, where � is the oscillator frequency of the FC-
active mode (Eq. (2.2)) and λp is the amplitude of the system-
field interaction (Eq. (2.6)), is sufficient for this purpose. Then
the infinite hierarchy of Eq. (6.3) can be truncated by the ter-
minator for the deeper hierarchy ρ̂

(n+1)
j1···jK

(t) and ρ̂
(n)
j1···,jk+1,···jK

(t)
as

∂ρ̂
(n)
j1···jK

(t)

∂t
≈ −

[
i

¯
Ĥ×(t) + nγ +

K∑
k=1

jkνk + �̂

]
ρ̂

(n)
j1···jK

(t).

(6.7)
The inclusion of an underdamped Brownian oscillator mode
instead of a Drude mode is also possible,29–31, 56 but the cal-
culations become computationally more demanding. In such
cases, a variety of techniques have been developed to accel-
erate the numerical performance of the HEOM method.57–62

It should be noted that the HEOM scheme breaks down when
the heat bath is at zero temperature (β = ∞), since the factors
in Eq. (6.3) diverge.

The 0th element of the hierarchy is identical to the re-
duced density operator ρ̂(t) = ρ̂

(0)
0,···0(t) defined in Eq. (2.10).

The higher-order elements ρ̂
(n)
j1···jK

(t) are introduced to account
for nonperturbative and non-Markovian system-bath interac-
tions. Although these elements do not have a direct physical
meaning, they allow us to take into account the quantum en-
tanglement between the system and the bath.47–49

We use dimensionless variables throughout this arti-
cle, measuring frequencies in units of a certain frequency
�0 = 1, and time in units of �−1

0 . We take the frequency of
the FC-active mode as � = 3, so that the vibrational period is
τ� = 2π/3 ≈ 2.1. The dimensionless horizontal shift of the
potential curves of the FC mode is taken as �e = 1. The car-
rier frequencies of the pulses are the same, ωp = 47, and the
optical period τ op = 2π /ωp ≈ 0.13. The pulse envelopes are
Gaussian,

E(t) = exp

{
−4 ln 2

(
t

τp

)2
}

, (6.8)

where τ p is the pulse duration (full width at half maximum
of the amplitude). In the simulations, we assume that the
pulses possess the same waveform, so that their phase shift
is �φ ≡ φ2 − φ1 = 0. This choice renders the pulses #1 and
#2 equivalent and hence S(τ ) = S(−τ ). In what follows, we
show S(τ ) for τ ≥ 0. We assume resonant excitation, ωp = εe

+ �. A slight detuning of ωp (of the order of the vibrational
frequency �) does not qualitatively alter the results.

The dynamics of the FC mode is described by six vi-
brational basis functions in each (ground and excited) elec-
tronic state. The inclusion of additional vibrational basis func-
tions does not change the results. The spectral width γ of the
bath, the system-bath coupling λ2, the temperature parameter
β¯�0, as well as the pulse strength λp and the pulse duration
τ p are varied. The numerical integration of the HEOM equa-
tions is performed with the 4th-order Runge-Kutta method.
The hierarchy equations are truncated at N = 12 and K = 3.

VII. DOUBLE-SLIT SIGNALS

The problem under study involves several timescales.
The fastest is the optical period τ op = 2π /ωp. The next is the
vibrational period τ� = 2π/3 of the FC-active mode, which,
in our calculations, is 15.7 times longer than τ op. The third
characteristic time is the pulse duration τ p and the fourth is a
characteristic dephasing time.

Figure 1 shows S(τ ) in the simplest case of bath-free evo-
lution. Panels (a) and (b) correspond to weak (λp = 0.01) and

0 1 2 3 4 5
0

1

2

3

4
x 10

-4

τ, reduced units

 S

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

τ, reduced units

 S

(b)

FIG. 1. Double-slit signal S(τ ) for the isolated chromophore and weak (panel (a), λp = 0.01) and strong (panel (b), λp = 1) as well as short (τ p = 1.2) pulses
at ambient temperature (β¯�0 = 0.5).
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strong (λp = 1) pulses, respectively. The signals in both panels
oscillate with the pulse carrier frequency ωp (fast beatings),
superimposed on which are slower beatings with the vibra-
tional frequency �. Weak pulses promote only a small frac-
tion of the initial ground-state population to the excited elec-
tronic state, while strong pulses may depopulate the ground

state significantly. In any case, the information content of the
double-slit experiment on the isolated chromophore is inde-
pendent of the pulse strength.

The situation changes if the system is not isolated from its
environment. Figure 2 shows signals for excitation by weak
pulses (λp = 0.01). The system-bath coupling is moderate
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FIG. 2. Double-slit signal, S(τ ), (left column) and real part of its Fourier transform, S(ω), (right column). The chromophore is excited by weak (λp = 0.01) and
short (τ p = 1.2) pulses. The system-bath coupling is moderate (λ2 = 1). The width of the spectral function of the bath is γ = 0.1 (panel (a)), γ = 1 (panel (b)),
γ = 10 (panel (c)). The temperature is ambient (β¯�0 = 0.5).
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(λ2 = 1). It has been chosen such that it cannot be ignored
on the timescale of the experiment. The left column shows
the double-slit signal S(τ ), while the right column shows its
Fourier transform, S(ω). The panels (a) through (c) corre-
spond to different width parameters γ of the spectral density
of Eq. (6.1). The temperature is chosen as β¯�0 = 0.5 (am-
bient temperature).

We first consider S(τ ) in the time domain (left pan-
els). In panel (a), γ = 0.1, which corresponds to inhomo-

geneous broadening (exp (−g2(t)) of Eq. (A13) is approxi-
mately Gaussian). In panel (c), γ = 10, which represents
the limit of the homogeneous broadening (exp (−g2(t)) of
Eq. (A13) is approximately exponential). Panel (b) represents
an intermediate situation (γ = 1). Since exp (−γ t) can be
interpreted as the memory function of the bath, the bath of
panel (a) (γ = 0.1) can be regarded as highly non-Markovian,
while the bath of panel (c) (γ = 10) is almost Markovian. For
fixed system-bath coupling strength λ2, the decay of the signal
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FIG. 3. Double-slit signal, S(τ ), (left column) and real part of its Fourier transform, S(ω), (right column). The chromophore is excited by strong (λp = 1) and
short (τ p = 1.2) pulses. The system-bath coupling is moderate (λ2 = 1). The width of the spectral function of the bath is γ = 0.1 (panel (a)), γ = 1 (panel (b)),
γ = 10 (panel (c)). The temperature is ambient (β¯�0 = 0.5).
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accelerates from panel (a) to panel (c). In all three cases, the
system-bath coupling is moderate, in the sense that the sig-
nals decay on timescales which are longer than τ�. Note that
the signals of Fig. 2 exhibit no indication of the chromophore
vibration.

Consider next the Fourier-transformed spectra S(ω) in the
right column of Fig. 2. The weak-pulse double-slit signal as
well as the linear absorption spectrum I(ω) (Eq. (4.6)) are de-
termined by the linear (in λp) contribution to the polarization.

The signal S(ω) in panel (a) corresponds to a narrow spectral
density of the bath and exhibits a certain vibrational struc-
ture. If the spectral density becomes broader (panels (b) and
(c)), S(ω) exhibits only a single broad peak. Due to the finite
spectral width of the pulses (the factor |E(ω)|2 in Eq. (4.5)),
the weak-pulse double-slit signal S(τ ) reproduces I(ω) only
within the frequency window of the pump pulses. The weak-
pulse double-slit signal, therefore, contains less information
than I(ω).
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FIG. 4. Double-slit signal, S(τ ), (left column) and real part of its Fourier transform, S(ω), (right column). The chromophore is excited by strong (λp = 1) and
short (τ p = 1.2) pulses. The system-bath coupling is strong (λ2 = 10). The width of the spectral function of the bath is γ = 0.1 (panel (a)), γ = 1 (panel (b)),
γ = 10 (panel (c)). The temperature is ambient (β¯�0 = 0.5).
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The situation is qualitatively different when the chro-
mophore (coupled to the same baths) is excited by a pair
of strong pulses (λp = 1), see Fig. 3. In contrast to Fig. 2,
the signals S(τ ) in panels (a) through (c) of Fig. 3 (left col-
umn) exhibit distinct vibrational beatings with the period τ�.
The explanation of this finding is as follows. In the weak-
pulse limit, the signal is determined by the linear-response
coherent contribution S(c)(τ ) (Eq. (4.3)). The population con-
tribution S(p)(τ ) is proportional to λ4

p and is, therefore, much
smaller than S(c)(τ ). For strong pulses, on the other hand,
S(c)(τ ) and S(p)(τ ) contribute to S(τ ) in a comparable man-
ner. While S(c)(τ ) decays due to the bath-induced dephasing,
S(p)(τ ) is unaffected by the dephasing. S(p)(τ ) mirrors vibra-
tional wave-packet dynamics in the ground state and in the
excited electronic state, which manifests itself through vibra-
tional beatings in the overall S(τ ). The oscillatory responses
in Fig. 3 have nothing to do with electronic quantum coher-
ences ρeg(t) and can be considered as classical coherences.63

The Fourier transforms of the signals, S(ω), are shown in
the right column of Fig. 3. For strong pulses, S(ω) cannot be
interpreted as an absorption spectrum. Equation (3.3) tells us,
however, that the double-slit signal represents the change of
the energy of the primary system due to the interaction with
pulse #2 (see, e.g., Ref. 27, Chapter 4), while the system dy-
namics is modified by pulse #1. It is, therefore, not surprising
that S(ω) in panels (a) and (b) exhibits not only a pronounced
absorption peak but also a negative contribution at ω ≈ 44.5,
which corresponds to stimulated emission. The spectrum S(ω)
in panel (c) appears almost structureless, although its counter-
part S(τ ) shows clear vibrational beatings. This example indi-
cates that double-slit signals in the time domain may reveal
finer details of the system dynamics than in the signals in the
frequency domain.

Figure 4 shows double-slit signals in the case of strong
system-bath coupling. Panels (a)-(c) of the figure correspond
to those of Fig. 3, but the system-bath coupling is 10 times
stronger (λ2 = 10). Consideration of S(τ ) (left column) re-
veals that the Markovian bath (panel (c)) effectively quenches
the vibrational coherences. Nevertheless, strong pulses allow
us to monitor the wave-packet dynamics of the system in
highly dissipative and non-Markovian environments (panels
(a) and (b)). In other words, the system dynamics induced
by strong pulses competes successfully with bath-induced re-
laxations and dephasings, leading to the survival of vibra-
tional beatings (see, e.g., discussions in Refs. 43 and 64–67).
The Fourier transforms S(ω) are shown in the right panels of
Fig. 4. S(ω) in panel (a) exhibits a peak at ω ≈ 46.25,
corresponding to �/2 (the central peak is at ω ≈ 47.75).
A beating with this frequency can hardly be recognized
in S(τ ). When the width of the spectral function of the
heat bath increases, S(ω) becomes featureless (panels (b)
and (c)).

Figure 5 illustrates the effect of a low-temperature en-
vironment. The S(τ ) in panels (a)-(c) of Fig. 5 correspond to
those in Fig. 3, but the temperature is about an order of magni-
tude lower (β¯�0 = 10.5). Under these conditions, the chro-
mophore initially resides in its vibrational ground state. As
expected, the decay of S(τ ) slows down at low temperature
and becomes nonexponential. The weak-pulse signals exhibit
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FIG. 5. Double-slit signal S(τ ). The chromophore is excited by strong
(λp = 1) and short (τ p = 1.2) pulses. The system-bath coupling is mod-
erate (λ2 = 1). The width of the spectral function of the bath is γ = 0.1
(panel (a)), γ = 1 (panel (b)), γ = 10 (panel (c)). The temperature is low
(β¯�0 = 10.5).

a similar behavior, as follows from Eqs. (4.3) and (A13). Both
electronic and vibrational beatings are pronounced in all pan-
els. The Markovian bath (panel (c)) is most efficient in the
quenching of vibrational beatings.

Figure 6 shows S(τ ) calculated for the system and bath
parameters of Fig. 3(c), but for pulses which are three
times longer (τp = 3.6 > τ�). In this case, weak pulses can-
not excite vibrational wave packets (not shown). Neverthe-
less, strong pulses with this duration can induce significant
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FIG. 6. Double-slit signal S(τ ) generated with strong (λp = 1) and
relatively long (τ p = 3.6) pulses for moderate system-bath coupling
(λ2 = 1) and a moderately non-Markovian bath (γ = 1) at ambient
temperature (β¯�0 = 0.5).

vibrational wave-packet dynamics which can withstand the
dephasing, resulting in clear vibrational beatings. Related
phenomena have been studied and explained in Refs. 32
and 42.

Figure 7 illustrates that baths with different spectral func-
tions can be very different with respect to the efficiency of
quenching of the double-slit signal. The non-Markovian bath
of Fig. 7 is equivalent to that of Fig. 4(a), but the cou-
pling parameter λ2 is 20 times larger. Despite the very strong
system-bath coupling, the non-Markovian bath does not ef-
fectively quench the signal and vibrational beatings can still
be observed. Similar findings have been reported for excitonic
systems.68

Generally, non-Markovian baths are less efficient in
quenching S(τ ) than Markovian baths. However, the effect
of a non-Markovian bath on S(τ ) can be qualitatively mod-
eled by a Markovian bath with a weaker coupling. It seems
that the differences between Markovian and non-Markovian
baths are more conspicuous in the frequency domain than in
the time domain: Markovian baths yield narrower line shapes
than non-Markovian baths (compare panels (a) and (c) in
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FIG. 7. Double-slit signal S(τ ) generated by strong (λp = 1) and short
(τ p = 1.2) pulses for very strong system-bath coupling (λ2 = 200) and a
non-Markovian bath (γ = 0.1) at ambient temperature (β¯�0 = 0.5).

Figs. 2–4). The signal in the frequency domain is, however,
proportional to the pulse spectrum E(ω), which complicates
the extraction of the line shape (Lorenzian vs. Gaussian) of
S(ω) if the spectral width of the pump pulses is smaller than
the width of the absorption spectrum.

VIII. CONCLUSIONS

We performed simulations of the prototypical double-slit
experiment for a chromophore with a FC active mode in a dis-
sipative environment. Our calculations treat the laser-matter
coupling nonperturbatively, which allows us to simulate the
dynamics of strongly driven material systems. Moreover, the
system-bath coupling is treated numerically exactly with the
HEOM method. Commonly used approximations, such as
perturbation theory in the laser-matter coupling or Redfield
theory, have been avoided. The simulations reported here are,
therefore, of benchmark character and may be useful for the
testing of the accuracy of more approximate, but computa-
tionally less demanding, methods.

We demonstrated that the double-slit signal generated
with strong laser pulses can be considered as a superposition
of N-wave mixing (N = 2, 4, 6. . . ) signals. It can be split
into population and coherence contributions, S(τ ) = S(p)(τ )
+ S(c)(τ ). The former provides information on the dynamics
of vibrational wave packets in the ground state and the excited
electronic state of the chromophore, while the latter monitors
the time evolution of the electronic coherences of the chro-
mophore density matrix.

We studied how heat baths with different coupling
strengths and memories affect the double-slit signal. Our main
finding can be summarized as follows: When the bath-induced
dephasing is effective, the strong-pulse double-slit experiment
yields more information on the dynamics of the material sys-
tem than the weak-pulse double-slit experiment.

The coherent responses triggered by intensive phase-
locked pulses are not specific for the particular model
system considered here, but are generic for photochemically
nonreactive polyatomic molecules in solution. For example,
double-slit strong-field spectroscopy may be employed to
unravel the condensed-phase dynamics of molecular chro-
mophores possessing weak electronic transitions (see, e.g.,
Ref. 69) or weakly FC-active vibrational modes in the pres-
ence of strong electronic dephasing. Probing the dynamics of
high-lying electronic states of molecular systems with intense
pulses may become another promising research topic (cf.
Ref. 32). Strong-pulse double-slit experiments on systems
exhibiting photochemical reactions (e.g., photoinduced
electron-transfer or proton-transfer reactions) or on multi-
chromophoric systems should be considered in the future.
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APPENDIX A: EVALUATION OF THE LINESHAPE
FUNCTIONS

Consider the Hamiltonian defined by Eqs. (2.1), (2.2),
and (2.4). The corresponding lineshape function g(t) consists
of two contributions due to the FC-active mode (g1(t)) and the
bath (g2(t)):

g(t) = g1(t) + g2(t). (A1)

Both of them can be cast into the form

gi(t) =
∫ t

0
dτ

∫ τ

0
dτ ′

[
Ci(τ

′) − i¯

2
χi(τ

′)
]

(A2)

(i = 1, 2), where χ i(t) = −χ i(−t) and Ci(t) = Ci(−t) are the
anti-symmetric and symmetric coordinate correlation func-
tions, respectively.

For the FC-active vibrational mode,27

χ1(t) = i 〈[Q(t),Q]〉 /¯, (A3)

C1(t) = 〈{Q(t),Q}〉 /2, (A4)

and

g1(t) = λ1

{
coth

(
¯�β

2

)
(1 − cos(�t)) + i (sin(�t) − �t)

}
,

(A5)

λ1 = �2�/2.

For g2(t), we define the collective bath coordinate as

q =
∑

α
qα. (A6)

The anti-symmetric correlation function is responsible for
bath-induced fluctuations,

χ2(t) = i〈[q(t), q]〉/¯, (A7)

while the symmetric correlation function is responsible for
dissipation,

C2(t) = 〈{q(t), q}〉/2. (A8)

χ2(t) and C2(t) are related by the fluctuation-dissipation the-
orem (see, e.g., Refs. 26 and 27). They can be expressed
through the bath spectral distribution (2.5) as follows:

χ2(t) = 2

¯

∫ ∞

0
dωJ (ω) sin(ωt), (A9)

C2(t) =
∫ ∞

0
dωJ (ω) cos(ωt) coth(β¯ω/2). (A10)

For the Drude spectral distribution (6.2), χ2(t) and C2(t)
can be evaluated analytically:26, 27

χ2(t) = λ2γ

¯
e−γ t , (A11)

C2(t) = λ2γ

{
1

2
cot

(
β¯γ

2

)
e−γ t + 2

β¯

∞∑
k=1

νk

ν2
k − γ 2

e−νkt

}
.

(A12)

Here, β ≡ 1/(kBTeq) is the inverse temperature and νk

= 2πk/(¯β) are the Matsubara frequencies. Finally, the bath
lineshape function is given by

g2(t) = λ2

2γ
{e−γ t + γ t − 1}

(
cot

(
¯γβ

2

)
− i

)

+ 2λ2γ

¯β

∞∑
k=1

e−νkt + νkt − 1

νk

(
ν2

k − γ 2
) . (A13)

APPENDIX B: STRONG-PULSE DOORWAY-WINDOW
APPROXIMATION

To cast the double-slit signal into DW form, we follow
the derivations of Refs. 32 and 40. Assuming that the pulses
#1 and #2 are temporally well separated (that is, the time in-
terval between the pulses, τ , is much longer than the pulse
duration τ p), we can write

S(τ ) ≡ 〈WG(τ )D〉 , (B1)

where

D = G1(δ1,−δ1)ρ0 (B2)

is the doorway (D) operator and

W =
∫ δ2

−δ2

dtE∗(t)X†G2(t,−δ2) (B3)

is the window (W) operator. The Ga(t, t′) are the evolution op-
erators governing the driven dynamics of the FC-active mode
induced by the pulse #a, G(t − t′) is the stationary field-free
evolution operator, and ρ0 is the initial system distribution.
The arrival times of pulses #1 and #2 have been set to zero
(τ a = 0). [−δa, δa] are the time intervals outside of which the
action of pulse #a can be neglected.

In general (e.g., for pump-probe spectroscopy) Eq. (B1)
is not the final expression for the optical signal: One has to
extract the components of D and W which obey the appropri-
ate phase matching condition.32, 40 In the “double slit” exper-
iment, on the other hand, there is no external phase selection.
Nonetheless, it is instructive to determine the phase depen-
dence of the signal explicitly. This can immediately be done
by using Eqs. (A9) and (A10) of Ref. 40:

Dgg ∼ 1,Dee ∼ 1,Deg ∼ eiφ1 ,Dge ∼ e−iφ1 , (B4)

Wgg ∼ 1,Wee ∼ 1,Weg ∼ eiφ2 ,Wge ∼ e−iφ2 . (B5)

Here, Dkn ≡ 〈k|D|n〉, Wkn ≡ 〈k|W |n〉, k, n = e, g. Insert-
ing Eqs. (B4) and (B5) into Eq. (B1), we arrive at formulas
(5.2) and (5.3).
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