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Abstract

We have applied the quantum master equation to simulate a two-level system driven by a fractal noise in a dissipative
environment. The fractal noise is assumed to be a two-state process with "D and characterized by its correlation function
1rt b where 0-b-1. Steady state absorption spectrum for the system is obtained analytically for a monochromatic laser
excitation. A dramatic blue shift as well as a broadening of the absorption peak, due to the interference between the fractal
noise and the natural damping, is observed. q 1998 Elsevier Science B.V. All rights reserved.

w xRecently a single molecule 1–5 as a guest on a solid host matrix environment reveals a very exciting
system to test many fundamental models of molecular physics, solid state physics and quantum optics. The
matrix in a very low temperature keeps the molecule fixed and therefore its zero phonon line is a simple isolated
transition. Thus the molecular system can be represented as an electronic two-level system where the effect of
vibrational dynamics can be made negligibly small. A resonant laser field interaction with the molecule can be
approximately treated with parametrized Bloch equation. The very first observation of single molecule showed

w x w x w xnarrow homogeneous Lorentzian line shapes 2 , saturation 3 and antibunching 4 due to optical nutation. The
w x w xpump-probe experiments 5 showed light shift and Autler–Townes 6 -like structures when the pump is in

resonant with the molecule.
There are two important points to understand the single molecule spectroscopy properly. The applicability of

two-level model to the molecule, without considering the vibrational motion, may impair the use of Bloch
equation. For example, a long lived vibrational mode in the electronic ground or excited state does not allow the
nonlinear polarization to go up to the saturation intensity. Secondly, the presence of matrix as the environment
can modify the Bloch equation picture where the vacuum and the gas phase environment is assumed.

The environment which basically induce a noise in the system can be of very short to very long correlation
time depending on the properties of the material. The single molecular detection technique provides information
about the nature of the noise with the ensemble average removed. An observable which has recently drawn
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attention in spectroscopic studies of single impurity molecule in host system is the modulation of their transition
w xenergies 1 with time. The energy fluctuations, which appear as spectral noise, can be described as spectral

w xrandom walks. Such systems have been studied theoretically 7,8 using randomly distributed independent
w x w xtwo-level systems, which follow the Anderson-Kubo processes 9 . Then Tanimura et al. 10 introduced the

Ising spin glass model, whose properties have been extensively studied within the field of critical phenomena as
the host lattice instead of using independent two-level systems. They calculated the fluctuations in the transition
energies of impurity molecules, for different temperatures and various Ising parameters, and find that the
spectral distribution of the fluctuations follow approximately a 1rf power law.

In this work we study the model of an impurity molecule by a stochastic theory, where the perturbation from
Ž .the local environment is regarded as adiabatic stochastic process. We consider that the stochastic process j t is

a two state process taking the values "D and obeys a power law correlation function. The spectral properties of
such random fluctuations are revealed in many circumstances when rather than being dominated by a narrow
band of frequencies, spread themselves into a broad band spectrum, so that correlations persist from very short

w xto very long time scales 11 . Such spectra when they are inverse power law, indicate fractal random time series
w x12 and could be generated either by colored noise or by the chaotic solutions of low dimensional deterministic
systems. On the other hand, the statistics of the fluctuations are often found to deviate strongly from the
normally expected central limit theorem. However, a generalized central limit theorem holds for this long

w xcorrelated noise which satisfy a Levy stable distribution 11 . As this long correlated noise does not satisfy
w xfluctuation-dissipation relation 13 one has to consider it as external rather than being an internal by which the

back reaction of the noise on the system i.e, a pumping of infinite amount of energy into the system can be
avoided.

In the present work we are interested in analyzing the effect of fractal noise which modulates the frequency
of a two-state system and the system is also coupled to a thermal bath. We study the steady state probe
absorption of the system. For such we investigate the coherence of the system as a function of detuning and
intensity of the probe field in presence of fractal noise. We verify that the coherence of the system is sensible in
its shape on the correlation time and the coupling strength of the noise. Even when the coherence of the initial
density matrix does not exist, coherence appears asymptotically depending on the detuning, the intensity of the
external field and on the parameters of fractal noise. Our central result is that in the presence of fractal noise the
absorption spectra undergoes a blue shift and the amount of shift can be as large as of the order of homogeneous
linewidth due to natural damping.

In what follows we first construct the generalized master equation of the reduced system. The asymptotic
density matrix in presence of a driving field is then obtained to analyze the effect of long term memory of the
noise process.

Let us consider an impurity molecule interacting with an external laser field and a matrix environment. The
impurity molecule is described by a two-level system with the resonant frequency v . The interactions between0

the impurity molecule and the matrix consist of two parts. One is the dissipation part denoted by the heat bath,
and interaction between the molecule and the bath. This part corresponds to dissipation arises from the lattice
fluctuation of the matrix molecules. The other one is the stochastic perturbation part which is expressed as the
adiabatic perturbation on the two-level system. In the case of the pentacene doped p-terphenyl crystals, this

w xperturbation corresponds to the noise arises from the motion of the phenyl ring in the terphenyl molecule 1 .
The total Hamiltonian is then expressed as

H sH t qH qV qV t , 1Ž . Ž . Ž .T s B 1 2

Ž .where H t is the system Hamiltonian which includes the laser field interaction, and H and V are the baths B 1

Hamiltonian and the system-bath interaction, respectively. The stochastic perturbation on the system is denoted
Ž .by V t . The system Hamiltonian is expressed by the Pauli operators as2

"v0 yi v t iv tH t s s q" E s e qE s e , 2Ž . Ž .s z 0 q 0 y2
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where we assumed the laser field interaction with the amplitude E and frequency v in the rotating wave0
Ž .approximation RWA form. The heat bath Hamiltonian and the system–bath interaction are given by

H s "v b†b , 3Ž .ÝB j j j
j

V s" g s b qs b† , 4Ž .Ž .Ý1 j q j y j
j

Ž . Ž .respectively, where b b † are annihilation creation operator of the phonon with frequency v and g is thej j j j

coupling strength between system and bath modes. The stochastic perturbation is assumed to be

V t s"j t s , 5Ž . Ž . Ž .2 z

Ž .where j t is some stochastic process with zero mean and its properties will be specified later.
Following the standard procedure to derive the equation of motion for the reduced density operator of

w xtwo-level system 14 , we obtain the quantum master equation in the form

d r iv g0
)w xsy s ,r y i E t s qE t s ,r y 1qn s s ry2s rs qrs sŽ . Ž . Ž . Ž .z q y q y y q q yd t 2 2

g t X X X X Xy n s s ry2s rs qrs s y d t s s r t qr t s s y2s r t s W t ,t ,� 4Ž . Ž . Ž . Ž . Ž .Hy q q y y q z z z z z z2 0

6Ž .
Ž X.where W t,t is given by

X ² X :W t ,t s j t j t . 7Ž . Ž . Ž . Ž .
2Ž . < Ž . <Here g and n are defined as the natural damping rate gs2p D v g v and the thermal average excitation0 0

" v r kT y10w x Ž .number ns e y1 , where D v denotes the spectral density function of the harmonic oscillator heat0

bath modes.
Ž . ² Ž . Ž X.:Note that Eq. 7 implies the two point correlation function j t j t depends only on the time difference

< X <ty t so the process is stationary. In the normal diffusion process there exists a microscopic time scale, defined
by

² X :` j 0 j tŽ . Ž .
X

ts d t . 8Ž .H 2² :j0

² Ž . Ž .:If the correlation function j 0 j t decays quickly enough to make t finite, then one can explore the random
walk process for times t very large compared to t . The time scale separation between the random walk process
and the fluctuations of the relevant variable allows the central limit theorem to work, thereby reaching a
Gaussian diffusion process for the two-state model. On the other hand, in the case of t™` there is no time

Ž . Ž .scale separation between the microscopic diffusion and the microscopic process of fluctuations, j t which
implies non-Gaussian statistics.

Ž .Here we consider a dichotomous stochastic process j t taking the values "D and introduce the equilibrium
Ž .correlation function F t defined byj

² :j 0 j tŽ . Ž .
F t ' , 9Ž . Ž .j 2² :j

Ž . w xwhich is the function used in the definition of the microscopic time rate in Eq. 8 . Recently, Geisel et al. 15
established a connection between the stationary correlation function, and another important statistical function,

Ž .the waiting time distribution c t used in continuous time random walk model. This latter function determines
Ž .the probability that j t has made a transition between states in a time t. In the specific case where j is a
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Ž . Ž .dichotomous process, as in the case of present interest, this connection between F t and C t is exactly givenj

by
`

X X Xty t c t d tŽ . Ž .H
t

F t s . 10Ž . Ž .j `
X X Xt c t d tŽ .H

0

w xWest et al. 16 has considered a case of waiting time distribution which is an inverse power law to elucidate the
behaviour of anomalous diffusion by giving an explicit solution of fractional diffusion equation. In the present

Ž .study we consider the inverse power law waiting time distribution c t as
1

c t s , 11Ž . Ž .1qat
with

1-a-2. 12Ž .
Ž . Ž .Using Eq. 11 in Eq. 10 we obtain

A
F t ; , 13Ž . Ž .j bt

for
0-b-1, 14Ž .

where

bsay1. 15Ž .
Ž .Thus using the above correlation function in Eq. 13 we find the modified Bloch equation as follows

² X :iE g s tŽ .t0 q Xi v t² : ² : ² : ² :s t s iv s t y s t e y 1q2n s t yA d t , 16aŽ . Ž . Ž . Ž . Ž . Ž .˙ Hq 0 q z q bX2 2 0 ty tŽ .
² X :iE g s tŽ .t0 y Xi v t² : ² : ² : ² :s t syiv s t q s t e y 1q2n s t yA d t , 16bŽ . Ž . Ž . Ž . Ž . Ž .˙ Hy 0 y z y bX2 2 0 ty tŽ .

yi v t iv t² : ² : ² : ² :s t syiE s t e y s t e yg 1q2n s t yg , 16cŽ . Ž . Ž . Ž . Ž . Ž .˙ Ž .z 0 q y z

² 2:where the parameter A is taken in place of 1r j .
Although these equations look deceptively simple, they are difficult to solve analytically. In the present study

we calculate the asymptotic solution of equation of motion to investigate the steady state susceptibility.
² Ž .: i v t ² Ž .: yi v tBy taking the slowly varying envelope approximation i.e, s t sS e , s t sS e andq q y y

² Ž .: Ž . Ž .s t sS t and Laplace transformation of Eqs. 16 , we obtain,z z

iE g0
pS yS 0 s idS y S y 1q2n S yAS F , 17aŽ . Ž . Ž .q q q z q q2 2

iE g0
)pS yS 0 syidS q S y 1q2n S yAS F , 17bŽ . Ž . Ž .y y y z y y2 2

g
pS yS 0 syiE S yS yg 1q2n S y , 17cŽ . Ž . Ž .Ž .z z 0 q y z p

where F is given by

G ybq1Ž .
Fs , 18Ž .ybq1pq ivŽ .

Ž . Ž .with ds v yv and S denotes the Laplace transformed variable of S t .0 i i
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Thus the asymptotic solution can be obtained as
yg

S t™` 'Lim pS s . 19Ž . Ž .z p™ 0 z 2 )

g 1q2n q E r2 xqxŽ . Ž .Ž .0

and

yiE r20
S t™` sS t™` . 20Ž . Ž . Ž .q z yidqg 1q2n r2qAFŽ .

Here xqx ) is given by

g 1q2n q2 AuŽ .
)xqx s 21Ž .22

dyAÕ q g 1q2n r2qAuŽ . Ž .
with

G 1yb p 1ybŽ . Ž .
us cos , 22Ž .1yb ž /2v

G 1yb p 1ybŽ . Ž .
Õsy sin . 23Ž .1yb ž /2v

To obtain the absorption line shape E, we need to calculate the rate at which quanta are absorbed from the
Ž .external field EF . This can be expressed as

1
˙ ˙ ² :Es e W t qe W t ' s t 24Ž . Ž . Ž . Ž .˙ EF½ 52 2 1 1 zEF EFe ye2 1

˙ ˙w Ž .x Žw Ž .x . Ž .where W t W t and e e are the rate of change of occupation probabilities and energies of levels2 EF 1 EF 2 1
Ž .2 1 , respectively induced by the external field. Now in Schrodinger picture

yi v t iv t² : ² : ² :s t s iE s t e y iE s t e . 25Ž . Ž . Ž . Ž .˙z 0 q 0 yEF

Thus E becomes

² :s tŽ .q2 yi v t< <Esy2 E Im e . 26Ž .0 ž /E0

The asymptotic value of the bandshape function E can be obtained as
2g E r2 g 1q2n r2qAuŽ .Ž .0

Es 27Ž .22 2g 1q2n dyAÕ q g 1q2n r2qAu qE g 1q2n q2 Au r2Ž . Ž . Ž . Ž .� 4 0

where

A 1 p 1ybŽ .
Aus cos G 1yb 28Ž . Ž .1yb 1yb ž /2v 1ydrvŽ .0 0

A 1 p 1ybŽ .
AÕsy sin G 1yb . 29Ž . Ž .1yb 1yb ž /2v 1ydrvŽ .0 0

Ž . 2In the lineshape function, Eq. 27 , the term E in the denominator arises due to saturation effect induced by0

strong field and it affects the width of the lineshape. In presence of fractal noise this saturation effect increases
as field strength increases. For low field strength, however, this effect due to fractal noise is negligibly small.
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Ž .Fig. 1. Line shape function Erg is plotted with detuning v y v rg with E rg s5.0 and b s0.5 for different values of0 0

AX s Argv1y b s0.0, 0.4, 0.8 and 1.0.0

Ž .Near the resonance the term drv is very small, thus the contribution of detuning from these terms in Eqs. 280
Ž .and 29 is very small. Therefore even when E is small there is a blue shift in absorption which is0

approximately given by

A p 1ybŽ .
sin G 1yb .Ž .1yb ž /2v0

Note that since b is in the range of 0-b-1, the sin term is always positive and less than one.
The amount of shift and broadening due to fractal noise is proportional to the inverse of the magnitude v1yb.0

Since b , A and v are coupled parameters, it is difficult to estimate the individual effects of them. In the0

following we define Argv1yb 'AX, as a dimensionless quantity. In Fig. 1 we plot the absorption line shape as0

a function of detuning dsv yv for different noise intensity AX with bs0.5. When AX increases the blue0

peak shift and the broadening is observed. Fig. 2 is for bs0.9. Except b , the other parameters are the same as
in Fig. 1. The peak shift observed in Fig. 2 are about the same values as Fig. 1, whereas the broadening of the
peak changes dramatically especially for large AX. Fig. 3 displays the absorption for different laser intensities.
Although the peak height rises with the probe intensity, no other effect is observed in this case. In all cases we
assume the thermal bath is at zero temperature, i.e, ns0.

Fig. 2. Same as in Fig. 1 except b s0.9.
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Ž . XFig. 3. Line shape function Erg is plotted with detuning v y v rg with A s1.0 and b s0.7 for different values of E rg s1.0, 5.00 0

and 8.0.

To understand whether such peak shift and broadening are special character of the system driven by fractal
Ž X . yG Ž tytX .noise, we also calculate the same model using the exponential decay noise W ty t s e . We thus

obtain

AG yv A0
Aus and AÕs .2 22 2v yd qG v yd qGŽ . Ž .0 0

Now for a weakly coupled noise and taking slow decay noise i.e, Grv <1, the shift would be of the order of0
A A

g , whereas for the fractal noise case the shift is of the order of g . For the fractal noise case, if b is close1y bv v0 0

to unity, the shifts can be very large, at least of the order of g and can be seen clearly, whereas for the
exponential decay noise , as Arv <1, the shift may not be observed. Note that this shift arises from the0

interference between the natural damping and the noise, and differs from blue shift observed for a two-level
w xsystem driven by the Gaussian-Markovian bath at a finite temperature 17 .

In this paper, we have applied the quantum master equation to study absorption spectra of a two-level system
in a dissipative environment driven by a fractal noise. A dramatic blue shift as well as a broadening of
absorption peak are observed due to the interference between the fractal noise and the natural damping. A lot of
open questions are left to understand regarding the dynamical effect of this process which is now under
investigation.
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