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Abstract

Within the scope of generalized master equation we have shown the effect of bath with finite band width on the linear
absorption and on the resonance fluorescence and absorption spectra of a driven two-state system. It is found that depending
on the band width and temperature of the bath a reversible dynamics may set in even in the case of linear absorption induced
by weak field. At higher temperature the bath induces new resonance on the spectral profiles. q 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The study of dissipative dynamics of quantum systems within the framework of system-heat bath models has
w xdrawn wide attention for the last few decades 1–4 . Although the major works so far done in this direction are

confined in the domain of weak coupling of the system and the bath within the Markov approximation, recent
w x w xexperiments involving ultrafast time scale 5 and correlated laser pulse with adjustable memory time 6 , have

given tremendous impetus to the study of system-heat bath model beyond the Markov approximation. The issue
and relevance of non-Markovian relaxation processes have been addressed at length by many researchers. For

w x w xinstance, a cumulant expansion scheme 7 was considered by Villaeys et al. 8 to explain non-Lorentzian
w xnature of optical absorption for the femtosecond transient processes. Gangopadhyay and Ray 9 constructed a

system-operator concerned non-Markovian master equation for linear and nonlinear quantum optical model
w xsystem in the weak coupling regime. Lewenstein et al. 10 observed a strong narrowing of the resonance

fluorescence in a cavity with increasing driving field strength which they interpreted this as a dynamical
w xdecoupling of the atom from the vacuum field. A few other works 11 also deal with the effect of

radiation–matter interaction in going beyond Markov approximation, where the memory time t is small but of
y1 w xthe order of the decay time, g . Very recently, Brinati et al. 12 have found a non-Markovian effect at finite
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temperature on the absorption lineshape function of a driven two-level system in the steady state regime. They
have observed that the steady state absorption lineshape splits into twin peaks with increase in temperature.

An early thorough investigation on nonlinear optical phenomena with finite memory effect has been
w xperformed by Tsuensugu and Hanamura 13 by using Gaussian-Markovian frequency modulation of the

two-level system. Using a Green’s function approach, they have found the effect of memory on the coherent
optical transient, emission and absorption spectra of the driven two-level system. Their studies were based on
the stochastic Liouville equation which assumed a stochastic random modulation of the system frequency.

w xTanimura and Kubo 14 have shown that one can derive this equation of motion based on the system–bath
Hamiltonian, which makes it possible to include temperature effects into the dynamics of the total system. Then

w xTanimura and Mukamel 15 further have generalized the equation of motion to study a system which consists
of a two-level displaced harmonic oscillators system coupled to a heat bath and have studied the time dependent
Stark effects.

Very recently the tremendous growth of experimental sophistication has revealed interesting behaviour in the
decay of the excited atom confined in a cavity resonator or an optical band gap material whose modal density

w xcan be controlled and thus the rate and direction of the spontaneous emission can be designed appropriately 16 .
w xLewenstein et al. 10 studied the fate of the spontaneous emission of a coherently driven atom in a cavity

considering a finite response time of the environment. This effect which is connected with non-Markovian
w x w xfeatures, is tested experimentally 17 quite recently, and interpreted theoretically 18 as a consequence of the

renormalization of the cavity induced spontaneous emission by the strong driving field. In the same line Keitel
w xet al. 19 have studied linewidth of the resonance fluorescence spectra in terms of the decay rate of the dressed

coherencies and have predicted the sensitive influence of the density of modes with the possibility of
suppression and enhancement of the fluorescence.

In this work we have shown the dynamical effect due to the bath with finite band width on the spontaneous
emission of two state system both in the presence and absence of a strong driving field. In presence of an
external driving field the evolution of the system with memory can lead the system to a different steady state
where one can find the signature of the memory effect. However, a two-state system in a pure state will reach
the thermal equilibrium in the long time limit by the effect of this bath despite of the fact that the dynamical
evolution of the system will be different from that of the case with a broad band bath. By constructing an
appropriate modified Bloch equation we have shown that if the modal density in the vicinity of the system
frequency of interest is less than that of the vacuum space, the decay of the excited state will be retarded and if
it is greater it will be accelerated. So with a prototype finite band width of modal density of the bath, we have
studied the fate of the spontaneous emission from the two-level system in presence and in absence of a strong
driving field. For this purpose we have studied the linear absorption by a transient weak light. We have also

w x w xshown the effect of bath characteristics on the resonance fluorescence spectrum 20 a and probe absorption 20 b
following a strong pump.

Although the spectroscopic studies on dissipative systems are done very extensively in the context of gas
phase experiments, there are still many open questions to be answered if the optical system resides on the host

w xmaterial in condensed phases 21 . Then the system might be induced by various kind of noise processes, from
very short to very long correlation time which can be mimicked by a colored bath. The system can reside on the

w xappropriate material where the environment can be designed with our choice of control 16 over the
Ž .spontaneous emission. In this model study we would like to understand the following points: i How the effect

Ž .of band shape of the bath comes into play on the spectra in the linear and nonlinear regime of field strength. ii
How the position or band center of the bath affect in the linear absorption. Thus one can find the origin of
spectral shift and non-Lorentzian linear absorption which are commonly observed in the solution phase or in the

Ž .condensed phase and are usually fitted with some appropriate memory function. iii How the temperature of the
Ž .bath with finite band width affect on the linear absorption and also in the strong field induced cases. iv To

obtain the strong field induced effects we have made a critical comment on the density matrix theory of
damping for a finite band width of the bath and on the applicability of Regression theorem.
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The rest of the paper is organized as follows. In Section 2 we have constructed the master equation
considering a finite bandwidth of the reservoir and the corresponding modified Bloch equation is presented.
Section 3 is devoted to obtain the transient linear susceptibility. In Section 4 we have calculated the resonance
fluorescence spectrum and weak field induced probe absorption of the driven system by the strong field. The
paper is concluded in Section 5.

2. Generalized master equation and modified Bloch equation

Let us consider a system described by a Hamiltonian H . We assume the reservoir Hamiltonian is H ands R

the interaction between system and reservoir is V. So the total Hamiltonian can be written as

H sH qH qV'H qV . 2.1Ž .T s R 0

Generally, we write V as a sum of the products of the form

Vs" Q F , 2.2Ž .Ý i i
i

Ž .where Q and F are the system and reservoir operators, respectively, in the Schrodinger picture S.P. .¨i i

The joint density operator k for the system and the reservoir obeys the Liouville-von Neumann equation in
Ž .the interaction picture I.P. as

Ek i
sy V t ,k . 2.3Ž . Ž .

E t "

w xFollowing the standard procedure 4,22 of averaging over the bath variables, we obtain the equation of motion
of the reduced density of the system in S.P. as

d r i t X X X X X X X X² :w xsy H ,r y d t Q Q r t yQ r t Q F FŽ . Ž . .�ÝH Rs i j i i i jd t " 0i , j

X X X X X X X² :y Q r t Q yr t Q Q F F 2.4Ž . Ž . Ž .4Ri j j i j i

where

i iXX X X XQ r t sexp y H ty t Q r t exp H ty t , 2.5Ž . Ž . Ž . Ž . Ž .Ž .j s j s
" "

i iX X XF sexp y H ty t F exp H ty t , 2.6Ž . Ž . Ž .Ž .j R j R
" "

where we have made only one approximation that the joint density is always factorizable, i.e,

k t ss t f t , 2.7Ž . Ž . Ž . Ž .
Ž . Ž .where s t and f t are the system and bath density operators respectively in I.P. and then we assume the bath

Ž .is in thermal equilibrium at all time. Eq. 2.4 is the generalized master equation derived by many authors using
w xdifferent techniques 22 .

In what follows we consider a two-level system coupled to a reservoir in thermal equilibrium at some
temperature T , and driven by a classical monochromatic light field. The system Hamiltonian is expressed by the
Pauli operators as

"v0
H s s . 2.8Ž .s z2
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The heat bath Hamiltonian and the system–bath interaction are given by

H s "v b†b , 2.9Ž .ÝR j j j
j

Vs" g s b qs b† , 2.10Ž .Ž .Ý j q j y j
j

Ž †. Ž .respectively, where b b is the annihilation creation operator of the bath mode with frequency v and g isj j j j

the coupling strength between system and the bath modes. We assume the laser field interaction with the
Ž .amplitude E and frequency v in the rotating wave approximation RWA form as0

yi v t i v tV t s" E e s qE e s . 2.11Ž . Ž .ext 0 q 0 y

So the reduced density operator equation of motion becomes,

d r iv0 yi v t i v tw xsy s ,r y i E e s qE e s ,rz 0 q 0 yd t 2

Xt 2X X X X X Ž .Ž .† i v yv tyt0 j< <y d t s s r t ys r t s g b b eŽ . Ž .Ý ÝH q y y q j j j¦ ;½0i , j j R

X2X X X X Ž .Ž .† i v yv tyt0 j< <y s r t s yr t s s g b b eŽ . Ž . Ýq y y q j j j¦ ;
j R

X2X X X X Ž .Ž .† yi v yv tyt0 j< <q s s r t ys r t s g b b eŽ . Ž . Ýy q q y j j j¦ ;
j R

X2X X X X Ž .Ž .† yi v yv tyt0 j< <y s r t s yr t s s g b b e 2.12Ž . Ž . Ž .Ýy q q y j j j¦ ; 5
j R

where

r
X tX seyi v 0 szŽ tytX .r tX e i v 0 szŽ tytX . . 2.13Ž . Ž . Ž .

The Bloch equations then can be obtained as

t XX X X
) i v Ž tyt .0² : ² : ² : ² :s s iv s y iE t s y d t s t Q ty t e , 2.14aŽ . Ž . Ž . Ž .˙ Hq 0 q z q 12

0

t X X X X
)² : ² : ² : ² :s sy2 i E t s yE t s y d t Q ty t q s t Q ty t , 2.14bŽ . Ž . Ž . Ž . Ž . Ž .˙ Hz q y 0 z z

0

where
X2X i v Ž tyt .j< <Q ty t s g 1q2n v e ,Ž . Ž .Ž .Ý12 j j

j

2X X< <Q ty t s2 g 1q2n v cos v yv ty t ,Ž . Ž . Ž . Ž .Ž . Ž .Ýz j j 0 j
j

X < < 2 XQ ty t s2 g cos v yv ty t ,Ž . Ž . Ž .Ž .Ý0 j 0 j
j
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with

1
n v s . 2.15Ž . Ž .j " v r kTje y1

i v t E i v t0² Ž .: Ž . Ž . ² Ž .:Now invoking a slowly varying envelope approximation, s t sS t e , E t s e and s t sq q z
2

Ž .S t one findsz

i t X X X XṠ t s iDS t q E S t y S t Q ty t d t , 2.16aŽ . Ž . Ž . Ž . Ž . Ž .Hq q 0 z q 122 0

and

t X X X XṠ t s iE S t yS t y Q ty t qS t Q ty t d t , 2.16bŽ . Ž . Ž . Ž . Ž . Ž . Ž .Hz 0 q y 0 z z
0

where
X2X X yiŽvyv .Ž tyt .j< <Q ty t s g 1q2n v e 2.17Ž . Ž . Ž .Ž .Ý12 j j

j

with Dsv yv.0

As we have not employed Markov approximation thus we need to supply the band shape function of the bath
Ž . w xto carry out the integration in Eq. 2.16 . In the literature 7–11 , most of the workers have introduced the

Ž .memory effect through the kernels Q t as proportional to some time dependent functions. For example, inq,y, z
w x y< Ž tytX . < rtRefs. 8,10,11 the kernels are taken as of the form e . But in this way of introducing time dependent

memory kernels lacks the knowledge of temperature dependence of the non-Markovian decay rate. An
equivalent way of choosing exponential time decay in the bath correlation function is to use a distribution

Ž X. Ž X.function P v with a finite width. We use Lorentzian distribution function of P v as

P0XP v s , 2.18Ž . Ž .2X 21q v yv tŽ .B

where t is the characteristic time of the reservoir or the inverse of the reservoir bandwidth and v is the centerB

frequency of the band. t is normally of the order of gy1 but gt is always less than 1. P is a dimensionless0

constant quantity. The bandshape function we have chosen here is a prototype shape function for finite width of
the vacuum band and thus will be suffice to obtain the qualitative idea about the effect of any finite band width
of the bath. As any arbitrary distribution function may not satisfy the physical requirement of applying the
regression theorem, this function guarantees the attainment of thermal equilibrium in the long time limit of the
initial pure two-state system and also the problem can be handled analytically.

Using the bath distribution function we can calculate the following quantities

1g XX X .Ž .Žy i D y tytbQ ty t s 1q2n v e , 2.19Ž . Ž . Ž .Ž . t12 02t

ty tX
g

X X yQ ty t s 1q2n v cos D ty t e 2.20Ž . Ž . Ž . Ž .Ž . Ž . tz 0 c
t

and

1t X X ytrtA t ' Q ty t d t sg 1ye cos D tyD t sin D t , 2.21Ž . Ž . Ž . Ž .H 0 c c c2 2D t q10 c

< Ž . < 2where D svyv and D sDqD and gs2p g v P .b B c b 0 0
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Thus the modified Bloch equation reduces to

1i g Xt X .Ž .Žy i D y tytbṠ t s iDS t q E S t y 1q2n v S t e , 2.22aŽ . Ž . Ž . Ž . Ž . Ž .Ž . tHq q 0 z 0 q2 2t 0

and

ty tX
g t X X XyṠ t s iE S t yS t yA t y 1q2n v S t cos D ty t e d t . 2.22bŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . tHz 0 q y 0 z c
t 0

Thus we find that at the Markovian limit i.e, when t™0, we recover the usual Bloch equation. For example,
one can show that

1 Xt X XyŽ tyt .rtlim S t e d t sS t 2.23Ž . Ž . Ž .H i i
tt™0 0

Ž .and lim A t sg where S is any one of S , S or S .t ™ 0 i q y z
Ž .The modified Bloch equation as given in Eq. 2.22 is an important result in this work because depending on

the band center, width and temperature of the bath the system dynamics can change immensely from the
Ž .conventional Bloch equation and can lead to different steady state. Note that to derive Eqs. 2.22 we have

XŽ . Ž .considered n v sn v in order to obtain the qualitative results of non-Markovian effects. A more accurate0
XŽ . Ž .estimation can be given with a Taylor series expansion of n v around n v . But for the rest of the paper we0

XŽ . Ž .consider the usual approximation of n v sn v .0

3. Transient absorption lineshape

w xIn the ultrafast dephasing processes observed experimentally 5 take place on a time scale where the system
evolves with memory and thus a delta correlated bath, often used theoretically, is no longer valid. The

w xnon-Lorentzian absorption profile 8 , obtained experimentally in the solution phase or in the condensed phase,
are fitted normally with some memory function, but these methods are not always physically transparent. Here
in the following discussion we will be able to find the physical origin of the spectral shift and asymmetry along
with the fact that at higher temperature how the new resonances appear due to finite band width of the bath even
in the case of linear absorption. Our aim here is to calculate the transient susceptibility which is again related to
the polarization in the linear response term as follows:

t X X XP t s x ty t E t d t . 3.1Ž . Ž . Ž . Ž .H
0

Ž .Microscopically P t is defined as

P t sTr r t m 'r m qr m , 3.2Ž . Ž . Ž .21 12 12 21

where m is the transition dipole matrix element.
Ž .Taking the Laplace transform of Eq. 2.22a one obtains

y1
iE g 1q2nŽ .0

S p s S 0 q S py iDq 3.3Ž . Ž . Ž .q q z2 2 ptq iD tq1Ž .B

where

`
yp tS p s e S t d t .Ž . Ž .Hq q

0
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Assuming initially the system is in the ground state and thus we obtain,

iE S pŽ .0 zy1S t s L 3.4Ž . Ž .q 2 py iDqg 1q2n r2 pty iD tq1Ž . Ž .B

and thus we find

iE X Xt0 X X Xi v t l t l t1 2² : ² :s t s e Ae qA e s ty t d t . 3.5Ž . Ž . Ž . Ž .Hq z2 0

Therefore, the imaginary part of the susceptibility is given by

< < 2m X Xt21XX X X Xl t l t1 2 ² :x v sy Re Ae qA e s ty t d t , 3.6Ž . Ž . Ž . Ž .H zž /3" 0

where

1 1
l q iD q l q iD q1 B 2 B

t tXAs , A s ,
l yl l yl1 2 2 1

1and the factor accounts for the isotropic absorption.3

² Ž X.:Assuming the probe absorption is sufficiently weak and transient we consider s ty t sy1 and thus wez

obtain

< < 2 l1 t l2 tm e y1 e y121XX X
x v sy Re A qA , 3.7Ž . Ž .½ 53" l l1 2

where l are given by1Ž2.

1 iDx X1 2 2(l sy q " 1rt yD y2 iD rty4G q4 iDrt , 3.8Ž .1Ž2. x x22t 2
X g Ž .with G s 1q2n qDD , D svyv and D sDyD .B B B x B

2t

For time long as compared to any other time scale we find

< < 2 X
m A A21XX

x v sy Re q . 3.9Ž . Ž .½ 53" l l1 2

XXŽ .Finally, apart from some proportionality factor of x v , the bandshape function can be given by
g

1q2nŽ .
2Bs , 3.10Ž .2gt g 24 2 3 2 2 2 2D t y2 D t D qD 1qD t y 1q2n qDg 1q2n D tq 1q2nŽ . Ž . Ž .d d dž /2 4

where

D sv yv . 3.11Ž .d 0 B

For D s0, one obtains,d

g
1q2nŽ .

2Bs , 3.12Ž .2gt g 24 2 2D t qD 1y 1q2n q 1q2nŽ . Ž .ž /2 4



( )G. Gangopadhyay et al.rChemical Physics 242 1999 367–385374

Ž . Ž . Ž .Fig. 1. a Variation of bandshape function Bgrmodal density of the bath P vyv is shown against detuning Drg' vyv rg with0 0
Ž . Ž . Ž .ns0, D rgs0 for two different values of kstgs0.0, 0.5. Both scales are arbitrary . b Same as in a with ns0, kstgs0.4 ford

Ž . Ž .different values of D rgsy1.0, 0.0 and 1.0. c Same as in a with ns2 and D rgs0 for different values of kstgs0.0, 0.2 andd d
Ž . Ž . Ž . Ž .0.5. d Same as in a with kstgs0.5 and D rgs0 for different values of ns0.0, 0.5 and 2.0. e Same as in a with ns2.0 andd

kstgs0.5 for different values of D rgsy1.0, 0.0 and 1.0.d
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and if t™0,

g
1q2nŽ .

2Bs . 3.13Ž .2g 22D q 1q2nŽ .
4

To analyze the absorption lineshape we have plotted the bandshape with the probe detuning D for the
different parameters of the vacuum band. We are considering three parameters of the bath, t , temperature, n
and D sv yv , i.e, detuning of the center of the reservoir band from the system resonance frequency. Wed 0 B

Ž .consider very small D which is of the order of g or less. In Fig. 1 a we show that at zero temperature andd

D s0 the absorption lineshape becomes narrower with increase in t but there is no shift in the peak. Whend

D /0 and for nonzero value of t we find a spectral shift depending on the sign of D . This is shown in Fig.d d
Ž .1 b . Along with the shift we find the line shape is non-Lorentzian. This is because with the increase in detuning

D the number density of bath modes in the vicinity of the frequency of two-level system is less than in the cased

of ts0 i.e, infinite band width of the bath. That means the system finds less bath modes to dispense energy to
the bath and also to be dephased by the bath modes. Therefore, the decay rate decreases which makes the
lineshape narrower and the two-state system follows the shape of the vacuum band when it is decaying and the
Lorentzian absorption band becomes asymmetric. If the bath mode density near v is very small, the system0

Ž . Ž .will be decoupled from the bath and will show a delta function peak. In Fig. 1 c and d as D s0 there is nod

spectral shift. In these cases at finite band width of the bath, the absorption line shape splits into twin peaks. As
in the case of linear absorption we consider only weak probe field situation, so there is no saturation unlike the

w xcase in Ref. 12 . Therefore a narrow band of vacuum with high thermal average photon number acts as an
another coherent field and we can interpret this phenomenon as thermal bath induced Rabi splitting. If we move
the vacuum band from the line center of the two-state system, i.e, D /0 we find the splitting becomesd

Ž .asymmetric which is shown in Fig. 1 e . The reason of the asymmetry in splitting is as follows. The splitting
means the system assumes two characteristic frequencies instead of its original resonance frequency v and0

these two frequencies experience different bath mode density in their neighbourhood and thus the decay rate of
Ž .each individual peaks are different and are of different heights. In all Figs. 1 a–e we have drawn the modal

density of the bath for the corresponding values of t for comparison.

4. Spectra of the driven two-state system by a strong field

Here we find out the effect of the bath with finite band width on the fluorescence and absorption spectra of
the driven system. For this we need to obtain the steady state quantities of the system. Here we assume the

Ž .reservoir band center is on resonance with v , i.e, D s0. Taking the Laplace transform of Eqs. 2.22 one0 d

arrives at,

i
pS p yS sS p q E S p yS p Q , 4.1aŽ . Ž . Ž . Ž . Ž .q 0 q 0 z q q2

1 1
pS p yS s iE S p yS p yg y yS p Q , 4.1bŽ . Ž . Ž . Ž . Ž .Ž .z z 0 q y z zž /p pq1rt

where

`
)Xyp tQ p s e Q t d t , Q p sQ p 4.2Ž . Ž . Ž . Ž . Ž .Ž .Hq 12 y q

0
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Ž . Ž .with Q p and Q p beingq z

g yi
Q p s 1q2n v , 4.3Ž . Ž . Ž .Ž .q 02 Dty i 1qptŽ .

1
Q p s2 pg 1q2n v . 4.4Ž . Ž . Ž .Ž .z 0 1qptŽ .

Thus the steady state solution of Bloch equation reduces to

2 2gV g 22D 1qV q 1q2n q 1q2nŽ . Ž . Ž .
2 4

S t™` syŽ .z 2 2gV g 21 2 2 2E 1q2n 1qV q 1q2n D 1qV q 1q2n q 1q2nŽ . Ž . Ž . Ž . Ž . Ž .02 ½ 52 4

4.5Ž .

and

iE r20
S t™` s S t™` , 4.6Ž . Ž . Ž .q zg 1y iV

yiDq 1q2nŽ . 22 1qV

where VsDt .
This is interesting that the non-Markovian feature, i.e, the reservoir characteristic time t appears in the

steady state solution of the Bloch equations. For nonzero detuning the steady state values are different from the
usual broad band bath case and steady state observables will depend on t . The details of steady state behaviour

w xare discussed in Ref. 12 . Now we are interested about the dynamical features due to the modified Bloch
equation. At finite t , the decay becomes slower due to longer correlation of the heat bath noise. For this purpose

w x w xwe study the strong field induced resonance fluorescence 20 a and probe absorption of the driven system 20 b
unlike the ordinary probe absorption to include the effect of saturation.

4.1. Resonance fluorescence spectrum

w x Ž .In order to calculate the strong field resonance fluorescence spectra 20 a S nyv , i.e,0

` X X XŽ .yi nyv t0 ² :S nyv sRe lim e s tq t s t d t , 4.7Ž . Ž . Ž . Ž .H0 q y
t™` 0

w xwe follow the standard prescription 20 of using regression hypothesis. The validity of regression hypothesis
and a brief comment on quantum Markov process for the finite bandwidth of the reservoir is given in the
Appendix. Here we assume all detuning parameters are zero, i.e, Ds0 and D s0 to make life simple andd

without loosing any extra understanding. That means here we consider the vacuum band is centered exactly on
the resonance frequency of the two-state system.

Calculating the Laplace transform of the quantity
X ² X :G t s lim s tq t s t , 4.8Ž . Ž . Ž . Ž .q y

t™`

we obtain

f pŽ .
XG p sL G t s , 4.9Ž . Ž . Ž .Ž .

pF pŽ .
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where

1 g
2 3 2 2 2F p s t p qpq 1q2n t p qp qp E tq3g 1q2n r2 qE . 4.10Ž . Ž . Ž . Ž .Ž .0 02 ž /21qptŽ .

Ž . w xFrom this F p one can still find the poles of Mollow spectrum 20 a at t™0. But it can be approximately
factorized as follows

t 2

F p s pyl pyl pyL pyL pyL . 4.11Ž . Ž . Ž . Ž . Ž . Ž . Ž .q y 0 q y21qptŽ .

Ž .f p can be expressed as

1 2f p s S t™` q1 p pqQ p pqQ 0 qE r2Ž . Ž . Ž . Ž .Ž . ½ 5z y z 02

g iE0
yS t™` pq pqQ 0 . 4.12Ž . Ž . Ž .Ž .y yž /ptq1 2

Ž . Ž .Now taking g<E , F p can be factorized approximately and the roots of p for F p s0, i.e, l , L0 " 0

and L can be given as"

1 11r2 32l sy 1. 1y2k 1q2n , L sy qE tq g 1q2n� 4Ž . Ž ." 0 0 22t t

and

L sa" ib 4.13Ž ."

where

1 32 2 2(asy E tq g 1q2n , bs E ya ,Ž .Ž .0 02 2

and ksgt . Here l are exact roots but L and L are approximate roots. For numerical calculation of the" 0 "

spectrum we have calculated the poles L and L by using a polynomial root finding algorithm.0 "

Therefore, the incoherent part of the spectrum can be written as

C C CL L L0 q yS nyv syRe q qŽ .0 ½ i v yn qL i v yn qL i v yn qLŽ . Ž . Ž .0 0 0 q 0 y

C Cl lq yq q , 4.14Ž .5i v yn ql i v yn qlŽ . Ž .0 q 0 y

Ž . Ž . Ž .where the C-values are the residues of f p rpF p at five simple poles of F p .
To demonstrate the dependence of the effect of tailored reservoir on the fluorescence spectra, we take t and

Ž .n as parameters. In Fig. 2 a we plot the fluorescence spectra and the modal density of the reservoir with
detuning v yv. For ts0, i.e, for infinitely broadband reservoir, the fluorescence spectrum shows the well0

w xknown Mollow triplet 20 a. For finite bandwidth of the bath, i.e, for nonzero t , the central peak stays as same
profile, however, the side peaks become narrower. The reason is the following. Under the strong driving field,
dipole moment of the two-state system oscillates at three different dressed frequencies, v and v "V , where0 0 R

V is the Rabi frequency induced by the strong laser field. The width of these peaks mainly depend on theR

spontaneous decay rates induced by vacuum radiation field. When the value of t increases, the density of bath
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Ž . Ž . Ž . Ž .Fig. 2. a . Fluorescence spectrum S n y v g rmodal density of the bath P n y v versus frequency n y v rg is plotted, with0 0 0
Ž . Ž . Ž .E rg s10.0 and ns0.0 for three different values of ksgt s0.0,0.05 and 0.1. Both scales are arbitrary . b . Same as in Fig. 2 a with0

ks0.05 for three different values of ns 0.0, 1.0 and 2.0.

modes decreases near the side peak frequencies and thus the width of the side peaks decrease sharply. However,
the mode density of the reservoir near the central peak does not change much. This is why the width of the
central peak is not affected. The small shift in side peaks is due to the fact that the Rabi frequency is detuned
from the band center of the bath and can be explained as in the case of linear absorption.

Ž .In Fig. 2 b we show the fluorescence spectra with increase in temperature but for small value of t , i.e,
gts0.05. With increase in temperature, the peaks are all broadened almost as in the case of broadband
reservoir. However, the side peaks are shifted outward slightly. That means the Rabi frequencies increase
slightly and this is due to the finite correlation of the bath.

Ž .In Fig. 3 a we show the spectra at fixed nonzero temperature for different values of t . With moderate values
of t , i.e, when the density of bath modes become very low near the range of Rabi frequencies, the width of the
side peaks decrease sharply. In such ranges of temperature and t , the width of the central peak increases and if
t is larger than this the central peak disintegrates into twin peaks. The splitting in the central peak for different

Ž . Ž .temperatures is shown in Figs. 3 a and 3 b . This splitting of central peak for narrow bandwidth of the bath is
induced by thermal quanta of the bath. We find this feature for the central peak only because the vacuum band
shape we have chosen is centered around the system resonance and thus the vacuum modes are present very
little near the frequency range of v "V to dispense energy to the bath and the strong field induced Rabi0 R
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Ž . Ž . Ž . Ž .Fig. 3. a Same as in Fig. 2 a with ns1.0 for three different values of ks 0.05, 0.2 and 0.4. b Same as in Fig. 2 a with ks0.4 for
three different values of ns 0.5, 1.0 and 2.0.

sidebands are decoupled from the bath. If we would assume the maximum of the reservoir band near the side
peaks, we could have found the reversible dynamical feature through the side peaks also.

Ž .The splitting of the central peak at higher temperature n and for shorter bandwidth of the bath can be traced
1 1r2w � Ž .4 xfrom the poles near the resonance frequency of the system, i.e, psl sy 1. 1y2k 1q2n . For" 2t

Ž .low values of t and n, 1y2k 1q2n is positive and the two Lorentzians are merged together. When t and n
are of moderate values, l become complex and the central peak splits up into two. One can evaluate the"

1r21 w Ž . xseparation between the peaks as Ss 2k 2nq1 y1 and this can be described as a thermal bath
'2k

induced Rabi splitting. S increases with decrease in bandwidth of the bath and with increase in temperature. In
effect, a colored bath with very short bandwidth with large thermal photon number acts as an another coherent
driving field.

4.2. Absorption spectrum

The absorption spectrum of a weak field probing a strongly driven two-level system has been calculated by
w xMollow 20 b through the correlation function by the density matrix approach which we will adopt here. The

w xdetailed theoretical and experimental comparison can be found in the Ref. 20 c. Here we just show the
dependence of the finite bandwidth and temperature of the bath on the absorption profile.
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w xThe weak probe field absorption spectrum of the driven two-state system can be calculated 20 b,c from

` X X XŽ .yi v yv tp 0 ² :I v yv s lim e s tq t ,s t d t , 4.15Ž . Ž . Ž . Ž .Hp 0 y q
t™` 0

Ž .where the real and imaginary parts of I v yv give the absorption and dispersion spectrum, respectively.p 0

Here v is the frequency of the weak probe field. We also assume D s0 as in the case of resonancep d

fluorescence. By performing Laplace transform of the quantity

X X² :g t s lim s tq t ,s t , 4.16Ž . Ž . Ž . Ž .q y
t™`

we obtain

f p y f pŽ . Ž .Ž .2 1Xg p sL g t s , 4.17Ž . Ž . Ž .Ž .
pF pŽ .

Ž . Ž .where F p is given in Eq. 4.11 and

1 2f p s S t™` q1 p pqQ p pqQ 0 qE r2Ž . Ž . Ž . Ž .Ž . ½ 51 z y z 02

iE0
qS t™` pqg pqQ , 4.18Ž . Ž . Ž .Ž .q y2

and

1 2f p s 1yS t™` p pqQ p pqQ 0 qE r2Ž . Ž . Ž . Ž .Ž . ½ 52 z y z 02

iE0
yS t™` pyg pqQ . 4.19Ž . Ž . Ž .Ž .q y2

We thus obtain

X X XC C CL L L0 q yI v yv sy q qŽ .p 0 i v yv qL i v yv qL i v yv qLŽ . Ž . Ž .0 p 0 0 p q 0 p y

X XC Cl lq yq q , 4.20Ž .
i v yv ql i v yv qlŽ . Ž .0 p q 0 p y

X Ž Ž . Ž .. Ž . Ž .where C -values are the residues of f p y f p rpF p at the five poles of F p which are discussed2 1

earlier for the case of emission spectrum. The absorptive part of the spectrum is the real part of the expression
Ž .I v yv .p 0

In Fig. 4 we show the absorption profile to find the effect of k and n. Here also we set E rgs10.0. In Fig.0
Ž .4 a we take ns0 and for different values of k. At zero temperature and for finite bandwidth of the bath, the

w xprofile is similar to the absorption calculated by Mollow 20 b,c, i.e, a gain in the absorption profile is observed.
The effect of k is not so drastic near the center frequency but the Rabi sidebands affected by shifting outward
and become narrower with increase in k. This shift is analogous to the shift in linear absorption in the case
when the band center of the bath is detuned from the system frequency. In the strongly driven case, as is here,
system dipole has three dressed frequencies. Among them the Rabi side band peaks get affected strongly
because of the Rabi sideband modes are detuned from the center of the reservoir band and the bath mode
density is also very low in the vicinity of these frequencies and is shifted.
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Ž . w Ž . x Ž .Fig. 4. a Absorption spectrum Re I v y v g versus frequency v y v rg is plotted, with E rg s10.0 and ns0.0 for threep 0 p 0 0
Ž . Ž . Ž .different values of ks 0.0, 0.05 and 0.1. Both scales are arbitrary . b . Same as in a with ks0.4 for ns 0.5 and 2.0.

Ž .In Fig. 4 b we show the absorption profile at ks0.4 for different ns 0.5 and 2.0 as a typical case to
demonstrate. At finite temperature, the effect of t and n on the absorption profile are not so drastic as in the
case of fluorescence near the center frequency. This is because the absorption intensity near the two-state
resonance is usually very low and thus it is difficult to detect the splitting due to increase in temperature and
decrease in bandwidth of the bath.

5. Conclusion

We consider the system-heat bath model in the resonant interaction form for the bath with a finite bandwidth
to investigate the decaying dynamics of the system within one approximation that the system–bath joint density
is always factorizable. Due to the evolution of the reduced system with memory, a strong driving field leads to a
qualitatively different dynamics. We have given the modified Bloch equation for the Lorentzian bath mode
distribution as a prototype function for finite bandwidth of the bath. In the limit of infinitely broadband vacuum,
it reduces to the usual Bloch equation. The decay dynamics is studied through the transient linear absorption,
resonance fluorescence spectra and absorption spectra of the driven system. In the linear absorption we find the
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physical origin of spectral shift and non-Lorentzian lineshape which are usually observed in the solution phase
or in the condensed phase. At higher temperature and narrow bandwidth of the bath we find the splitting in the
absorption profile.

We have found a dramatic modification of the Mollow resonance fluorescence spectrum. At higher
temperature and for narrow bandwidth of the bath, a thermal bath induced splitting emerges on the central peak
of the profile of Mollow triplet. When the bath mode density decreases near the range of Rabi frequencies, the
peak width of the Mollow sidebands decrease very sharply. In the absorption profile of the driven system we
have found the signature of the bath through the sidebands. In the gain part of the profile the effect is smaller
and thermal bath induced splitting in the central peak is hard to observe.

We have analyzed the linear and nonlinear spectra purely from the dynamical point of view by assuming the
system–reservoir interaction is characterized by a finite bandwidth of the bath. Appendix A is added to
comment on the naming of the dynamics as non-Markovian and on the physical validity of the application of
regression theorem for arbitrary bandshape function of the bath. To understand the physical origin of the
splitting on the spectral profiles a heuristic argument is presented in Appendix B.

Although the Bloch equation picture is very general to describe many phenomena from NMR to Quantum
Optics in gas phase systems, however, a single impurity molecule in condensed phase with a realistic host
system demands a modification of Bloch equation to simulate the effect of the environment. For example, very

w xrecently a pump-probe experiment 21 b with a new host–guest system, e.g, benzanthracene in a napthalene
crystal, showed hyper Raman and sub-harmonic resonance on the profile of fluorescence which is explained by
modified Bloch equation. These modifications are needed not only just to satisfy the experimental data but also
to understand the effect of various noise processes induced by the host matrix from very short to very long

w xcorrelation time 23 . In this work we considered a model colored noise environment through a Lorentzian
bandwidth of the bath, which is a prototype of a finite bandwidth of bath, to understand dynamical modification
on the spectra. We hope a suitable host matrix can be designed to act as an environment with a finite response
time on the guest molecule to show the proposed effect to occur.
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Appendix A. A few comments on regression hypothesis and Markov property in the density matrix theory
of damping

Ž .First of all we show here that the approximation we have made in Eq. 2.7 i.e.,

k t ss t f t 's t f 0 A.1Ž . Ž . Ž . Ž . Ž . Ž .
w xsatisfy regression theorem 24,25 . This means the two-time correlation function evolves in the same way as the

expectation value.
At ts0, we have assumed

k 0 ss 0 f 0 . A.2Ž . Ž . Ž . Ž .
The reduced system and reservoir density operators are defined by

s t sTr k t , f t sTr k t , A.3� 4 � 4Ž . Ž . Ž . Ž . Ž .B s
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Ž .respectively. In terms of k t , the average of a system operator B, is given by

² : y1B t sTr Tr B 0 k t sTr B 0 Tr U t k 0 U t sTr B 0 s t , A.4� 4 � 4� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 4s B s B s

² Ž . Ž X.:where U is the total system–bath evolution operator. The two-time correlation function A t B t is given by

² X : X y1 y1 X XA t B t sTr Tr A t B t k 0 sTr Tr U t A 0 U t U t B 0 U t k 0� 4� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 4s B s B

sTr Tr A 0 U ty tX B 0 U tX
k 0 Uy1 tX Uy1 ty tX� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 4s B

sTr A 0 Tr U ty tX B 0 k tX Uy1 ty tX , A.5� 4Ž . Ž . Ž . Ž . Ž . Ž .� 4s B

Ž .where A is also a system operator. Here we should notice that the Eq. A.5 is an exact expression.
Ž . Ž . Ž .Comparing Eqs. A.4 and A.5 , we can find that both s t and the function

V t ,tX sTr U ty tX B 0 k tX Uy1 ty tX A.6� 4Ž . Ž . Ž . Ž . Ž . Ž .B

Ž .appear to evolve in the similar way but with subtle difference. Note that the initial time for the evolution of s t
is ts0 when the system–bath correlation vanishes. Without loss of generality one is interested in evaluating the

² Ž . Ž X.: X Ž X. Xcorrelation function A t B t for the case tG t . Thus one can assume V t,t s0, for tF t . So the initial
Ž X. X Xtime for the evolution of V t,t is ts t and thus a system–bath correlation will exist at ts t . This correlation

Ž X. Ž X .at the initial time in V t,t , gives some extra correction factor to the evolution of V t,t thereby causing
Ž X. Ž . Ž X.V t,t to evolve differently from s t . This extra factor will be destroyed provided k t factorizes for all time,

i.e,

k tX ss tX f 0 . A.7Ž . Ž . Ž . Ž .

w x Ž .This extra factor is calculated by Swain 24 . Thus when A.7 is satisfied, the two-time correlation function like
Ž . Ž .A.5 evolves in the same way as single time expectation value A.4 , i.e., quantum regression theorem holds.

Here we would like to comment on the Markov property in the context of density matrix theory of damping.
w xBy using the Langevin description of Heisenberg’s equation of motion, Lax 25 has proved that the Markov

property implies the regression theorem as well as the converse. In that derivation Markov property means the
Langevin force at time t be uncorrelated to any information at earlier times. In terms of density matrix theory he
w x25 has proved that the regression theorem can be taken as a definition of Markov property by which quantum
dynamics corresponds to classical dynamics. Thus according to Lax, in the density matrix theory Markov
property is a derived condition when the regression theorem holds good. This precisely means correlation
between system and bath does not evolve in time.

Ž .Actually the memory can come in the picture in two different ways: i one way is that the joint system–bath
Ž .density evolves with memory, which means when the factorization like A.7 is not valid. This should be called

Ž . Ž .as non-Markovian in the sense of Lax. ii Other way depends on the factorization assumption, Eq. A7 , which
means the reduced system density can evolve with memory. This is Markovian in the sense of Lax, because
regression hypothesis holds. In our work we follow the second condition but referred as non-Markovian to keep

w xtrack with the earlier literature 8–12 . In the text we have named the master equation for the reduced density as
a system operator concerned non-Markovian equation which evolves in time with memory and clearly needs a
shape function of the vacuum band. Thus one can conclude that the regression theorem or Markov property of

Ž w x.Lax has more general validity than the standard Born-Markov theory Louisell 3 and can cover the case when
the reduced system evolves with time convolution. Since the factorization assumption is independent of
bandwidth or memory function, the physical validity of the application of regression theorem lies on the choice
of the memory function or the bandwidth of the bath. One possible way is to choose the memory function so
that the dynamics should reach the appropriate thermal equilibrium in the long time limit.
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Appendix B. Origin of splitting on the spectral profiles: a heuristic argument

To understand the thermal splitting and to identify the source of eigenvalues l we consider the evolution of"

Ž .coherence term in Eq. 2.22a , for Ds0 and D s0 asb

i g Xt X XyŽ tyt .rtṠ t s E S t y 1q2n v S t e d t , B.1Ž . Ž . Ž . Ž . Ž .Ž .Hq 0 z 0 q2 2 0

which might be written as the pair of coupled equations

i g 1
Ṡ t s E S t y 1q2n v a t , a t sy a t qS t , B.2Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . ˙q 0 z 0 q2 2 t

Ž . Ž .with initial condition a 0 s0. If one wishes to, one may regard the introduction of a t as simply a
mathematical device, but in fact this variable has the physical significance of a field amplitude. Now write

Ž . Ž . Ž . Ž . Ž . Ž .S t sX t q iY t and a t sx t q iy t . Then the equations for the real parts areq

g 1
Ẋ t sy 1q2n v x t , x t sy x t qX t . B.3Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . ˙02 t

The eigenvalues derived from these equations are

1
l sy 1. 1y2gt 1q2n v , B.4( Ž . Ž .Ž ." 02t

Ž . Ž .which can be accounted for the splitting. The coupling between x t and X t that allows the eigenvalues to be
Ž .complex is, indeed, of the form as that which causes the vacuum field Rabi splitting in the cavity where x t is

Ž . w xthe real part of the amplitude of the cavity field and X t the real part of the atomic polarization 20 c.
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