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In this letter we study qubits coupled to the bath formed by their environment. Although entanglement of the qubits
is a well-known topic, much less effort has gone into the description of the correlations between the qubits and the bath.
Here, we investigate these correlations, and study their effect on the qubits in equilibrium and their dynamics following
the interaction with one or several external pulses. We find that a correct description of the correlations at the moment
of these interactions is essential for a correct understanding of the dynamics.
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The entanglement of two qubits (two-level systems)
measures the extent to which they are not separable, and is
a purely quantum effect. It is formed and destroyed by the
interaction of the qubit system with its environment.
Formation of entanglement is often the result of a deliberate
preparation procedure, while the destruction occurs because
of uncontrollable interactions. After the preparation of an
entangled state, the entanglement typically decays with time
to an equilibrium value. In the case of Markovian dynamics,
the entanglement smoothly decays with time, while
temporary increases are possible if the evolution is non-
Markovian. The dynamics of entanglement shows some
surprising characteristics. Even if the single qubit coherence
decays smoothly, the entanglement can go to zero in a finite
time, a phenomenon called ‘‘sudden death’’ of entangle-
ment.1) Furthermore, the entanglement can be revived from
death, i.e., the system can become entangled after a period of
zero entanglement.

All these time dependent phenomena are caused by the
interaction of the qubits with a bath. Entanglement which is
lost from the system during the time evolution is stored in the
bath.2) Crucially, correlations are created between the qubit
system and the bath. Their presence influences the dynamics
in the system. In particular, correlations present at the
moment of the interaction with an external force are not well
studied. Their detailed understanding is the topic of this
letter. Of course, correlations are formed continuously when
a system is placed in contact with a heat bath. This is closely
related to the reorganization energy known in chemical
physics.3,4) In the case of non-Markovian dynamics, the
correlations acts as a memory for the system, and influences
the system entanglement at a later point in time.5) Besides
this, there is another phenomenon which is important for a
complete description of the dynamics: the entanglement of
system and bath states at time zero (where zero can be chosen
arbitrarily, but in this paper will represent the moment of
interaction with an external pulse). In general, this quantity,
which reports on initial correlations,6–9) does not vanish and
can influence the system during its time evolution.10)

Theoretically, the dynamics of a system in contact with its
environment is often studied using master equations, which
have been extended to include initial correlations.11) It is

often assumed that the characteristic time scale of the
environment is much faster than the dynamics in the system.
A Lindblad form master equation can then be derived.12–14)

Because of the Markovian approximation of a fast bath, such
approaches cannot be used to study the memory effect of the
bath. The key effect is not the strength of the system bath
coupling, which can be included in master equations,15,16)

but the time scale on which the system bath correlations are
dissipated.

The dynamics of entanglement in the system can be
studied experimentally by applying one or more external
forces. These forces bring the system out of equilibrium, and
can be used to study its subsequent time evolution. While a
single external force probes the system’s linear response,
multiple forces can be applied to measure the nonlinear
response, which contains more detailed information about
the system, and, of particular interest here, of the system
bath correlations.

As a simple example, we start by studying a single qubit
in the pure dephasing case, where the system Hamiltonian
HS commutes with the system bath interaction HSB. This
case is exactly solvable when the system linearly couples to
a bath of harmonic oscillators.17,18)

Because the system Hamiltonian commutes with the
system bath interaction, the dynamics due to the system
Hamiltonian can be separated from the interaction. In the
interaction picture with respect to the bath Hamiltonian,
denoted I, the time evolution is given by

�ðtÞ ¼ e�iH�
S t=h� he�i=h�

R t

0
d� HI�

SB ð�Þ
þ i�ð0Þ: ð1Þ

In this equation, eþ denotes the time-ordered exponential,
A�B ¼ ½A;B� denotes the commutator, and h� � �i ¼
TrB � � � expð��HBÞ=TrB expð��HBÞ is the thermal average
over the bath at a temperature T ¼ 1=kB�. In writing this
equation, we have made the crucial assumption that the
system and the bath are independent at time zero, which is
not in general valid.

The propagator in this equation can be expanded exactly
using the cumulant expansion17) or path integral methods.19)

By writing the components of the density matrix as an
excited state population P ¼ h1j�ðtÞj1i and a coherence
CðtÞ ¼ h1j�ðtÞj2i, �ðtÞ ¼ ðP;CðtÞ;C�ðtÞ; 1� PÞ, the popula-
tion P is time-independent and the time evolution of the
coherence can be derived as
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CðtÞ ¼ e�i�t=h� e�gðtÞCð0Þ; ð2Þ
with the dephasing function gðtÞ ¼ 1=h�

2
R t
0
dt0

R t0

0
dt00 Lðt00Þ.

Here LðtÞ ¼ P
� g

2
�hx�ðtÞx�ð0Þi is the correlation function. It

can be written in terms of the spectral density

J ð!Þ ¼ �

2

X
�

g2�
m�!�

�ð!� !�Þ

as20)

LðtÞ ¼ 1

�

Z 1

0

d!J ð!Þ coth
�h�!

2
cos!t � i sin!t

� �
:

Note that most master equations are derived at zero
temperature in the approximation coth �h�!=2 ¼ 1 and that
recently the hierarchy method has also been extended to that
case,21) although for a limited form of the spectral density.
When a model is chosen for the spectral density, the
dynamics of the coherence can be evaluated from these
formulas. Because the expressions are exact, the formation
of system bath correlations during the time evolution and its
effect on the dynamics of the system are fully included.
What is missing, however, are the correlations in the initial
state.

To include these initial correlations between system and
bath states, we extend the model by allowing for a
preparation time t1. During the preparation time, correlations
build up. At time zero (which occurs after the preparation
time, that is, after t1 but before t2), when some interaction
with the outside world happens, they are present. They
influence the dynamics during the subsequent evolution time
t2. The system evolves freely before the pulse (t1) and after
the pulse (t2). We will assume that the external pulse takes
the form of a �-pulse, which flips the coherence (inter-
changes C and C�). The expression for the coherence Cðt2Þ
can be evaluated in terms of the dephasing function to
give18)

Cðt2Þ ¼ ei�t1=h��i�t2=h� e�2gðt1Þ�2gðt2Þþgðt1þt2ÞC�ð�t1Þ:
Correlations at time zero can now be formed by choosing a
positive value for t1. Its effect can be seen from the presence
of the gðt1 þ t2Þ term. If t1 is set to zero, it vanishes.

As a simple model for the system-environment coupling,
we choose the Drude spectral density J ð!Þ ¼ 2	!
=
ð!2 þ 
2Þ. The dephasing function at high temperature is
found to be22)

gðtÞ ¼ 2	

�h�
2
� i

	




� �
ðe�
t þ 
t � 1Þ: ð3Þ

The time dependence with and without correlations in the
initial state for this model is shown in Fig. 1.

We next study a system of two qubits each coupled to a
harmonic heat bath. Extensions to more than two qubits are
straightforward. The Hamiltonian for the qubit system is
now given by

HS ¼
X2
n¼1

�nc
y
ncn þ Jðcy1 þ c1Þðcy2 þ c2Þ; ð4Þ

where �n is the excitation energy of qubit n and J is a
coherent coupling between the two qubits. This coupling
promotes entanglement in the system, i.e., if the qubits are
initially not entangled, they can become entangled due to the

action of J. The excitation energies �n for each qubit can be
different in general, but we take them equal and choose
�1 ¼ �2 ¼ 1:5J in the numerical results in this work. The
system bath interaction becomes

HSB ¼
X2
n¼1

VnXn ¼ �
X2
n¼1

X
�

gn;�Vnx�: ð5Þ

Xn is an effective bath coordinate. The operators Vn, which
we choose to be Vn ¼ cyn þ cn, denote the effect of the bath
on the qubit n, with coupling strengths gn;�. While we take
a heat bath coupled to each qubit separately here, more
general forms of the interaction, including correlated
fluctuations, can be included by a straightforward general-
ization of the operators V . In our current model, the baths
lead to a flip in the state of the qubit.

Because the bath modes are harmonic oscillators which
couple linearly to the system, all necessary information on
the coupling of the system to the bath is contained in the
spectral densities. To proceed, we need to choose a model
for the spectral densities. We will take the fluctuations in
each qubit to be independent and choose the spectral density
of the system bath interaction of each qubit to be of the
Drude form,

J nð!Þ ¼ 2	n
n
!
n


2
n þ !2

: ð6Þ

While this choice of the spectral density, which corresponds
to a single time scale of the system bath interaction (see
below), leads to the simplest numerical propagation scheme,
an extension to more general spectral densities is possi-
ble.23,24)

To understand the effect of this spectral density on the
qubit system, we consider the correlation function LnðtÞ ¼
hXnðtÞXnð0Þi, where the average h� � �i is taken over the
harmonic bath. The correlation functions are found to be
exponential,25,26)

LnðtÞ ¼
X1
k¼0

cnke
��nk jtj; ð7Þ

where we have defined (for k � 1) �nk ¼ 2�k=h��n, �n0 ¼ 
n,
cn0 ¼ 	n
nð�iþ cot h��n
n=2Þ, cnk ¼ ð4	n
n=�nÞ�nk=ð�2nk �

2
nÞ. In what follows, we will take equal parameters for

each qubit and drop the index n in our notation. The real part
of these correlation functions describes the fluctuations
induced by the bath at a temperature T ¼ 1=kB�, while the

Fig. 1. (Color online) Time dependence of the coherence CðtÞ with (solid

line) and without (dashed line) system bath correlations at time t2 ¼ 0. The

solid line was calculated for t1 ¼ 1:0. Parameters are �h�
 ¼ 0:5, �h�	 ¼ 1:0

and � ¼ 0.
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imaginary part is responsible for the dissipation of energy. In
equilibrium, fluctuations and dissipation are balanced, and
the correlation functions obey the fluctuation dissipation
theorem.

The quantity of interest in our calculations is the reduced
density matrix for the qubits �ðtÞ, which is found by tracing
the complete density matrix RðtÞ over the bath degrees of
freedom: �ðtÞ ¼ TrB RðtÞ. In equilibrium at inverse tempera-
ture �, the complete density matrix is given by the
Boltzmann distribution Req ¼ exp½��ðHS þHB þHSBÞ�=
Tr exp½��ðHS þHB þHSBÞ�. Because of the presence of
the system bath interaction, no simple analytical expression
for the reduced density matrix �eq ¼ TrB R

eq exists. In
particular, it is in general not equal to the Boltzmann
distribution for the system Hamiltonian, �eq0 6¼ exp��HS=
Tr exp��HS (see Fig. 2). This is a signature of the presence
of system bath correlations in equilibrium, and leads to
a shift in the linear absorption spectrum.27) If the time
dependence of �ðtÞ can be obtained from a numerical
simulation, the equilibrium distribution can be found after a
long time propagation, �eq ¼ limt!1 �ðtÞ, provided that the
system is ergodic.

Such numerical propagation schemes exist. The dynamics
can be found from numerical path integration schemes,28–30)

or from the hierarchy of equations of motion.4,24–26,31–34) In
this paper, we will use the hierarchy of equations of motion,
where the reduced density matrix is propagated alongside
a set of auxiliary density matrices, which allows for the
correct inclusion of the system bath correlations. The largest
Matsubara frequency taken into account is set to M ¼ 2 in
this paper. Propagation of the hierarchy of equations of
motion starting from a given initial condition produces the
reduced density matrix as a function of time. The situation
relevant to experiment can be simulated by applying external
pulses to the system.

Because the system states can be detected in experiments,
we are looking for quantities that depend on the reduced
density matrix only. One quantity that reports on the system
bath entanglement is the difference between a population in
equilibrium and the population given by the Boltzmann
distribution with respect to the system Hamiltonian only (P0),
plotted in Fig. 2. The shift from P0 increases with increasing
strength of the system bath coupling (results not shown).

The shift of the equilibrium population, thus, reports on
the system bath correlations. Note that this shift is known as
the solvent shift in chemical physics. It is, however, not
a directly measurable quantity. We therefore consider the
dynamics of the qubit system after interaction with an
external pulse. The pulse acts on the total equilibrium of
system and bath, which includes the system bath correla-
tions. It brings the system out of equilibrium. Following the
pulse, the system will relax, until the equilibrium value is
reached again. We will consider a pulse that operates on
the first qubit only, and rotates its state over an angle �.
The result of such a calculation is shown in Fig. 3. The
correlations at t ¼ 0 are seen to influence the dynamics for
a time up to approximately 5=
. As expected, the effect is
stronger for larger 	 . A direct measure of the system bath
correlations is the difference between the two lines in Fig. 3.

In order to study this shift in more detail, we consider the
response as a function of two times, shown in Fig. 4. Two �
pulses separated by a time � interact with qubit one. Figure 4
shows the response with and without correlations at the
moments of interaction with the external forces. Neglecting
the correlations corresponds to the result obtained with
conventional master equations, for which the system and
bath are factorized at the moment of interaction with the
external force. This clearly does not capture the complete
quantum dynamics, as shown in Fig. 4. We expect this result
to hold as well at lower temperature, which is relevant to
many quantum information measurements.

In this letter, we studied the role of system bath
correlations in the dynamics of qubits interacting with one
or several external forces. These correlations is not only
formed continuously during the time evolution, but,
crucially, is also present at the moment of interaction of
the system with external forces. This leads to memory in the
system that extends from before to after the interaction. We
demonstrated that the resulting response of the qubit system

Fig. 2. (Color online) Approach to equilibrium. The initial state exp�
�HS=Tr exp��HS is propagated in time. It is clearly not the equilibrium

state, which is found at the end of the propagation. Parameters are 	 ¼ J,

 ¼ 0:5J, � ¼ 2:5=J, �1 ¼ �2 ¼ 1:5J. Plotted is the population of the state

where both qubits are excited. The dotted line shows the Boltzmann

population calculated from the system Hamiltonian only.

Fig. 3. (Color online) Response after a �-pulse (population of the state

where both qubits are in the excited state) with (solid line) and without

(dashed line) system bath correlations at time t ¼ 0. Parameters are 	 ¼
0:1; 0:2; 0:5; 1:0J, 
 ¼ 0:5J, � ¼ 2:5=J, and �1 ¼ �2 ¼ 1:5J.
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strongly depends on a correct inclusion of this initial
correlations. A challenging question for future work is the
representation of the amount of correlation, present by a
single number, preferably in a way that is direcly observable
in nonlinear measurements. It will also be interesting to
investigate to what extent the system and the bath are
entangled and not only classically correlated, leading to the
new concept of ‘‘bathtanglement’’. Furthermore, it will be of
interest to see whether master equations can be developed
that capture the system bath correlations and hence can
reproduce our results.
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