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A complete treatment of the entanglement of two-level systems, which evolves through the contact with

a thermal bath, must include the fact that the system and the bath are not fully separable. Therefore,

quantum coherent superpositions of system and bath states, which are almost never fully included in

theoretical models, are invariably present when an entangled state is prepared experimentally. We show

their importance for the time evolution of the entanglement of two qubits coupled to independent baths. In

addition, our treatment is able to handle slow and low-temperature thermal baths.
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The crucial feature of quantum information is the pres-
ence of coherent superpositions. A single isolated two-
level system (qubit) can be prepared in a superposition of
its 0 and 1 states, and the manipulation of such states leads
to new possibilities for the storage and processing of
information. In a pure quantum system, the superposition
is entirely coherent, which means that a definite phase
relation exists between the 0 and 1 states. Unlike in the
ideal isolated case, the interactions of real quantum sys-
tems with their environment lead to the destruction of these
phase relations, in other words, decoherence.

More interesting than a single two-level system is a
collection of multiple such qubits. Coherent superposition
states of multiple qubits can be prepared, and their dynam-
ics are studied to understand the functioning of quantum
networks [1]. The presence of phase relations between
qubits, a second type of coherence, is termed entangle-
ment. The destruction of entanglement through interac-
tions with the environment is an important problem, both
for a fundamental understanding of quantum mechanics
and the development of quantum information processing
[2]. Recently, it has been found that the decay of entangle-
ment can be very different from that of the single qubit
coherence. In particular, the entanglement can disappear
completely in finite time [3]. Interactions between qubits
further affect the time scale of the decay [4].

Here, we argue that, besides single qubit coherence and
the entanglement of multiple qubits, there is a third form of
coherence that is important for the description of quantum
information. The physical nature of this effect lies in a
detailed description of the heat bath that leads to decoher-
ence and disentanglement. In a complete theory, both the
system and the bath are quantummechanical. It is therefore
possible, and often unavoidable in experiment, to create
coherent superpositions of system and bath states, and such
superpositions will play an important role in the time
evolution of the qubit system of interest.

The description of entanglement dynamics starts from
an equation of motion for the qubits together with an initial
condition, which are both affected by a correct description
of the bath. Most theoretical treatments, including the

Redfield and Lindblad formulations, describe the qubit
dynamics under the Born and ultrafast bath approximations
[5]. These lead to convenient time-local equations of mo-
tion, but are only valid if the time scale of bath dynamics is
much faster than the characteristic time scales of the
system [7]. Furthermore, in the same limit, the initial state
can be chosen to be of a form in which system and bath are
independent. If the fast bath condition is not fulfilled,
however, the approximation breaks down. As briefly ex-
plained below, it is also invalid at low temperature, where
quantum fluctuations contribute longer time scales [6].
Although the effect of noise correlation (or non-

Markovian dynamics) on the entanglement has been
studied under the rotating wave approximation at zero
temperature [8], the role of the bath on the initial condition
has rarely been investigated. However, in the regime where
non-Markovian effects are important, the presence of
system-bath correlations invalidates the initial state in
which the system and the bath are independent.
Especially in the experimentally relevant case where the
qubit system is excited out of equilibrium and the subse-
quent dynamics is probed, a proper treatment of the initial
state is crucial.
It is the role of the bath in the equation of motion and, in

particular, in the initial state, that we explore in this Letter.
We present a new method to calculate the entanglement
that rigorously deals with the quantum dynamics in this
situation. The method treats the system-bath interaction
nonperturbatively and without assuming a fast noise bath
[6,9–11]. It thereby enables us to study the role of system-
bath coherence and of an initial state in which a coherent
superposition of the qubit system and the bath is prepared.
Before introducing our rigorous approach, we clarify the

role of system-bath coherence by starting from a simple
model, in which both the system and the bath are two-level
systems with transition energy �. In this much simplified
situation, the time scales of system and bath evolution are
identical, and therefore the role of system-bath coherence
is expected to be strong. With a coupling g the complete

Hamiltonian is given by H ¼ �cyScS þ �cyBcB þ gðcyScB þ
cyBcSÞ, where cS=B and cyS=B are the usual annihilation and
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creation operators working on the system or bath. The
system plus bath are assumed to be in thermal equilibrium
at an inverse temperature �. Apart from a shift in the
effective excitation energy, no effect of the bath is apparent
in the reduced density matrix for the system degrees of
freedom �. By considering the full density matrix R of
system plus bath, however, one finds a matrix element that
represents coherence between the system and the bath,
h0S1BjRj1S0Bi ¼ � 1

Z e
��� sinh�g, where S denotes the

system and B the bath, and Z is the total partition function.
This term would be zero for the commonly considered
initial condition R ¼ � � expð��HBÞ=tr expð��HBÞ. Its
presence shows that the density matrix in equilibrium is not
separable; it cannot be written as the product of a system
and a bath part. The correct treatment of the system-bath
coherence in the initial state is important for the entangle-
ment dynamics following a pulse that excites the system
out of thermal equilibrium.

In the following, we will study the entanglement of two
qubits each separately coupled to a more general bath,
which evolves on a characteristic time scale 1=�. The
qubits are labeled 1 and 2; both have an excitation energy
�, and they are coupled by an interaction J. The system
Hamiltonian is

HS ¼ �ðcy1c1 þ cy2c2Þ þ Jðcy1 þ c1Þðcy2 þ c2Þ: (1)

To study system-bath coherence, we need to introduce a
fully quantum-mechanical bath. A bath that is sufficiently
general to model many physical systems, while at the same
time allowing efficient calculations, is given by a set of
harmonic oscillators [12]. The individual bath modes are
labeled with an index j, and have masses mj, frequencies

!j, coordinates xj, and corresponding momenta pj. The

Hamiltonian for the system-bath interaction plus the har-
monic bath is (@ ¼ 1 throughout the Letter)

HSBþB ¼ �X

�;j

g�jV�xj þ
X

j

� p2
j

2mj

þmj!
2
jx

2
j

2

�
: (2)

Starting from this Hamiltonian, we need to derive an
equation of motion for the reduced density matrix of the
system. It must describe the fluctuations in the system
energies and the dissipation arising from the interaction
with the bath. Furthermore, we want the method to be able
to describe an initial state in which the system and bath are
correlated, i.e., for which the complete density matrix
cannot be written as a direct product of a system and a
bath part.

In the reduced description, all necessary information on
the bath and the system-bath coupling is contained in the

spectral densities J ��0 ð!Þ ¼ P
j

g�jg�0j
2mj!j

�ð!�!jÞ. While

the V�’s can be any system operator, we focus here on two
independent baths which induce transitions in a single

qubit each, given by V� ¼ c� þ cy� for � ¼ 1, 2. Thus,
the spectral representations of the cross-correlation func-
tions are identically zero, J 12ð!Þ ¼ J 21ð!Þ ¼ 0.

Furthermore, we assume that each bath evolves on the
same time scale and couples to a qubit with the same
strength. Both baths can then be described with the same
spectral density function, J 11ð!Þ ¼ J 22ð!Þ ¼: J ð!Þ,
which we model as J ð!Þ ¼ ! 2��

�2þ!2 . To see the effect of

fluctuations in the system parameters and of the dissipation
originating from this spectral density, we consider the
correlation function of the noise variables. It can be calcu-
lated as the Fourier transform of the spectral density to be

LðtÞ ¼ X1

k¼0

cke
��kjtj; (3)

where we have defined the time scales 1=�k ¼ �=2	k (for
k � 1) and 1=�0 ¼ 1=� and the prefactors c0 ¼ ��ð�iþ
cot��=2Þ, ck ¼ ð4��=�Þ�k=ð�2

k � �2Þ. For large �, that
is, in the case of a fast bath, the dissipative term, given by
the imaginary part of the correlation function, becomes
delta correlated. Quantum effects, however, make the fluc-
tuations induced in the system [given by the real part of
LðtÞ] always correlated for low temperature, in which case
the evolution of the bath contains time scales fixed by the
Matsubara frequencies �k [6]. The fast bath (Markovian)
approximation is then invalid. Note that we do not make
the rotating wave approximation in the system-bath inter-
action, which can lead to significant changes in entangle-
ment dynamics [13].
Using the Feynman-Vernon influence functional ap-

proach, the reduced equation of motion can be written in
the form of path integrals over the system coordinates. The
path integrals can be evaluated numerically [14,15], or the
equation of motion can be rewritten as a stochastic
Schrödinger equation [16]. Alternatively, a time-local
equation of motion for the reduced density matrix can be
derived [9–11]. It accounts for the dynamics of the quan-
tum bath and the system-bath coherence through a set of
auxiliary density matrices, whose time evolution is also
governed by time-local equations of motion. The set of

FIG. 1 (color online). Decay of entanglement from an initially
maximally entangled state j
i ¼ ðcy1 � cy2 Þj00i=

ffiffiffi
2

p
. The solid

line is the result from our full calculation while the Redfield
result is plotted as a dash-dotted line for comparison.
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density matrices can be propagated efficiently in a com-
puter, and this description is therefore well suited for the
study of entanglement dynamics. The complete equation of
motion involves multiple auxiliary density matrices,
labeled by a multi-index n�k, where � labels the various
terms in the system-bath interaction, and k the Matsubara
frequencies included to allow for low temperature. It in-
cludes the time scales and prefactors from the correlation
function, and is given by [6,10]

_�nðtÞ ¼ �
�
iH�

S þ X2

�¼1

XM

k¼0

n�k�k

�
�nðtÞ

� X2

�¼1

�
2�

��
� i�� XM

k¼0

ck
�k

�
V�
� V

�
� �

nðtÞ

� i
X2

�¼1

XM

k¼0

V�
� �

n�k!n�kþ1ðtÞ

� i
X2

�¼1

XM

k¼0

n�kðckV��
n�
�kðtÞ � c�k�

n�
�kðtÞV�Þ; (4)

where A�B � ½A; B�. The notation n�k ! n�k þ 1 refers
to an increase in the �k’th component of the multi-index,
while all other indices are unchanged. Similarly, �n�

�k ¼
�n�k!n�k�1 denotes a decrease of this index. For the simu-
lations in this Letter, we will use the values of � ¼ 1:5J,
� ¼ 0:3J, � ¼ 0:5J, � ¼ 2:5J. This method has recently
been applied to calculate the exciton dynamics in light-
harvesting complexes [17–19].

Given the equation of motion, the dynamics of the
system can be calculated numerically starting from an
arbitrary initial condition. The procedure takes the
system-bath coupling into account without invoking per-
turbative, Markovian, or rotating wave approximations.
The system-bath coherence in the initial state can be
included through the auxiliary density matrices. In particu-
lar, to obtain a thermal equilibrium initial state, which will
in general be a partially coherent superposition of the
system and the bath, one can propagate the equation of
motion starting from any state for a time longer than any
characteristic time scale in the system or the bath. Here, we
will not consider the possibility of a nonergodic system, in
which case additional averaging is required. We will now
first discuss the effect of the bath in the equation of motion,
followed by a treatment of the correlated initial state.

A popular measure of the entanglement of two qubits is
the entanglement of formation, which can be calculated
directly from the reduced density matrix through the con-
currence [20]. The effect of slow bath dynamics has been
shown to fundamentally alter the time evolution of entan-
glement between two quantum systems at zero tempera-
ture. In particular, strong coupling to a bath can not only
change the time scale on which entanglement disappears,
but also lead to revival of entanglement after a period of
zero concurrence [21]. This effect is also observed in the
current model. In Fig. 1, the concurrence is plotted as a

function of time, starting from an entangled state j
i ¼
ðcy1 � cy2 Þj00i=

ffiffiffi
2

p
(j00i is the common ground state), and

the ad hoc but common assumption of an independent bath.
The dash-dotted line shows the result of a Redfield calcu-
lation in the secular approximation, which treats the
system-bath interaction perturbatively and in the Born
and Markov approximations [7,17]. Without the secular
approximation, the Redfield equation can lead to an un-
physical density matrix, and the concurrence is ill defined.
The result from the full calculation (shown as a solid line)
is markedly different from the Redfield predictions. Before
reaching the same positive equilibrium concurrence as in
the Redfield calculation, it shows a revival of concurrence
(at t � 3) after sudden death of entanglement (around t �
2). This calculation shows that conventional quantum mas-
ter equations do not completely describe the entanglement
dynamics. To understand the positive equilibrium value of
the concurrence, which is the combined effect of the
coupling between the two qubits and the temperature, we
consider the following simplified model.
For two qubits weakly interacting with a heat bath, one

would expect the reduced density matrix in equilibrium to
be given by the Gibbs measure �eq ¼ e��HS=Tre��HS . For

a system Hamiltonian HS ¼ �ðcy1c1 þ cy2c2Þ þ Jðcy1c2 þ
cy2c1Þ, the concurrence in this equilibrium state is

C ¼ �1þ sinh�J

cosh��þ cosh�J
; (5)

which is positive for �J > sinh�11 � 0:88. We thus find
that for large J or at low temperatures, the equilibrium
concurrence is positive. This suggests that it might be
better to consider the entanglement of the eigenstates of
the system Hamiltonian instead, which vanishes in an
equilibrium state obtained through weak coupling with a
heat bath.
This is only half of the story. Apart from its effect on the

equation of motion, the slow bath also makes it impossible
to factorize the initial state into a system and a bath part.
This becomes clear if we consider a realistic physical
initial state. In the previous discussion, the initial state
was assumed to be a product state of system and bath
density matrices. This is nonphysical in the case of strong
system-bath coupling, because it is usually hard, if not
impossible, to prepare such a state.
A more realistic initial state can be obtained by applying

a pulse to the equilibrium state. Here, we consider a pulse
that affects only the first qubit by rotating it over an angle
	. This operation can be expressed as � ! �y

1��
y�
1 . Such

an operation clearly takes the system out of equilibrium,
and it creates additional entanglement. It can be realized,
for example, as a 	 pulse in nuclear magnetic resonance
[22]. The resulting time evolution of the concurrence is
shown in Fig. 2 as a solid line. The entanglement dynamics
is not captured in the Redfield approach (which cannot
include the system-bath correlations in the initial state),
shown as a dash-dotted line. To see the effect of system-
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bath coherence explicitly, we also perform the calculation
for a factorized initial state (resulting in the dynamics
plotted as a dashed line in Fig. 2). Although the reduced
density matrices for both the system and the bath are the
same as in the full calculation, the system-bath coherence
was set to zero just before applying the spin flip operation
at t ¼ 0. Even though the system-bath coherence is fully
accounted for in the subsequent time evolution in both
cases, it is clear that the presence of the system-bath
coherence in the initial state changes the entanglement
dynamics dramatically. The initially created entanglement
is much larger than in the case of a product initial state.
Moreover, the effect lasts long enough to reduce the en-
tanglement death time considerably. Death of entangle-
ment occurs only for short periods of time in the full
calculation, while no entanglement is found until after t ¼
4 when the initial system-bath correlation is ignored. This
finding shows that, even in calculating a property such as
the entanglement that depends only on the system degrees
of freedom, the initial system-bath coherence must be
properly taken into account. In effect, memory of entan-
glement can be stored in the bath. While we have uncorre-
lated baths coupled to each qubit in this study, the effect of
correlation in bath modes might well further strengthen
this finding, and entanglement measures that include the
system-bath coherence will be needed.

In conclusion, we have studied the entanglement of two
qubits in the presence of a quantum-mechanical bath. The
coherence between system and bath is found to have an
important effect on the time evolution of the concurrence
when the system is excited out of equilibrium, which is not
correctly described by a conventional quantum master
equation. These findings will be relevant for the design
of quantum networks [1] and information devices, as well
as for the dynamics of excitations in biological systems
[17,18,23], quantum dots [24], and conjugated polymers

[25]. For spin systems, the effect of a fermionic bath should
be investigated [26].
We thank Dr. A Ishizaki for helpful comments on the
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