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Abstract
Quantum interference effects are theoretically investigated in the
steady-state photon statistics of single-mode �- and V-type micromasers
with injected three-level atoms in a superposition of their internal states. The
two lower (upper) levels are nondegenerate and coherent in a general case.
For the �-type case, we have discussed how detunings affect the photon
statistics of the noninversion micromaser. Under the proper conditions
strongly sub-Poissonian field states with a large number of photons can be
easily produced in this novel micromaser even if there exists no coherence
between the two lower levels. For the V-type case, we have analysed how
the photon statistics changes with the increase of the ground-state
population. Although the generation of the strongly sub-Poissonian states is
always possible in the micromaser under the noninversion case, their photon
intensities become very weak compared to the �-type case. Our results
indicate that it is perfectly possible to experimentally realize a noninversion
micromaser with strongly sub-Poissonian statistics in the �-type system.

Keywords: Three-level atoms, micromasers, quantum interference,
photon statistics

1. Introduction

The cavity quantum electrodynamics (QED) in the strong
coupling regimes has become an important ground for testing
fundamental thoughts of quantum physics. For recent
advances in this field, for example, see the two papers in [1] and
references therein. As is well known, the Jaynes–Cummings
model (JCM) is the first fully quantum mechanical theoretical
model which describes the interaction of a two-level atom with
a single mode of the quantized electromagnetic field [2]. The
JCM has been experimentally realized both in the microwave
regime [3] and the optical regime [4]. This model is exactly
solvable without any dissipation and under the rotating-wave
approximation (RWA). Despite its simplicity, the JCM contains
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many important phenomena, such as collapses and revivals [5],
squeezing [6], sub-Poissonian statistics (SPS) [7], pure number
states [8] and Schrödinger-cat states [9]. So far, the above
phenomena, excluding squeezing, have been experimentally
observed or produced in the one-atom maser during the past
two decades [10–13].

The concepts of atomic coherence and interference have
led to some surprising innovations in quantum optics [14],
producing quantum noise quenching [15], lasers that emit
squeezed light [16], lasing without population inversion [17]
and new optical materials with a substantially enhanced index
of refraction [18]. Recently, Fam Le Kien and his co-
workers [19] have developed the quantum theory of the one-
mode �-type micromaser for the case of two degenerate lower
levels. They have predicted the field states with sub-Poissonian
photon statistics in the micromaser without the need for a
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population inversion. This interesting phenomenon should be
attributed to the atomic coherence between the two degenerate
lower levels. Many experimental observations of amplification
without inversion have been reported, for example, see [20].
So far as we know, however, a similar phenomenon has not yet
been observed in micromasers experimentally.

The purpose of this paper is to investigate how quantum
interference affects the steady-state photon statistics of single-
mode �- and V-type micromasers with injected three-level
atoms in a superposition of their states. In our models the
two lower (upper) levels are nondegenerate and coherent in
a general case. We show that the quantum interference can
enhance the amplification of the photon intensity and sub-
Poissonian (nonclassical) field states in the micromasers. A
comparison is made between the �- and V-type micromasers.
For the �-type case, the generation of sub-Poissonian field
states with a large number of photons is always possible in
the micromaser without the need for a population inversion
even if there exists no coherence between the two lower levels.
However, it is in general difficult for this phenomenon to take
place in the V-type system even if there exists strong coherence
between the two upper levels.

The rest of this paper is organized as follows. In section 2
we derive the master equations and present the steady-state
photon-number distributions (PNDs). In section 3, based on
the steady-state PNDs, we numerically investigate the photon
intensity and its fluctuations. Our main results are summarized
in section 4.

2. Master equations and steady-state PNDs

A true micromaser consists of a single-mode high-Q resonator
in which a monoenergetic beam of excited atoms is injected at
such a low flux that, at most, one atom at a time is present inside
the cavity. In this paper the injected atom has �- and V-type
three-level configurations, which are respectively presented in
figures 1(a) and (b). E1, E2 and E3 are the energies of levels
|1〉, |2〉 and |3〉, respectively; ω0 is the frequency of the cavity
field. For convenience, we use units of h̄ ≡ 1 throughout
the paper. We assume that � = E3 − E2 � |E3 − E1|
or |E2 − E1|. According to [21], one can obtain the effective
Hamiltonian which describes the interaction of the cavity mode
with an injected atom in the �- or V-type configuration under
the RWA. For � type, the effective Hamiltonian is in the form

Ĥe f f = �1|3〉〈3| − �2|2〉〈2| + g12(â|1〉〈2| + â†|2〉〈1|)
+ g13(â|1〉〈3| + â†|3〉〈1|),

�1 = ω0 − (E1 − E3), �2 = (E1 − E2) − ω0,

(1)

while it becomes for V type

Ĥe f f = �1|3〉〈3| − �2|2〉〈2| + g12(â|2〉〈1| + â†|1〉〈2|)
+ g13(â|3〉〈1| + â†|1〉〈3|),

�1 = (E3 − E1) − ω0, �2 = ω0 − (E2 − E1).

(2)

In the above equations, â and â† are the photon annihilation
and creation operators for the cavity field, g12 and g13 are the
coupling strengths between the atom and field for two transition

(a) (b)

Figure 1. Atomic level configurations used throughout this paper:
(a) � type and (b) V type.

processes and �1 and �2 are the detuning parameters between
the field’s frequency and the two atomic transition frequencies,
respectively. In addition, � = �1 +�2 is the energy difference
between the two lower (upper) states.

We assume that, before entering the cavity, each atom is
prepared in a mixed state. The density matrix of the initial
state of each atom is given in the following form:

ρA = ρA
11|1〉〈1| +

3∑
i, j=2

ρA
i j |i〉〈 j |, (3)

where

ρA
ii > 0,

3∑
i=1

ρA
ii = 1,

ρA
32 =

√
ρA

22ρ
A
33eiφ = ρA∗

23 .

(4)

In the above equation φ is a relative phase between levels 2
and 3. Let the atoms be injected into the cavity according to
a Poissonian process with an average rate R. We denote the
atom–field interaction time by τ . The coarse-grained equation
of motion for the cavity field is then given by

ρ̇(t) = Rδτ ρ(t) + Lρ(t), (5)

where δτρ(t) is the change in ρ(t) due to an atom interacting
with the cavity field for the time τ , and Lρ stands for the
Liouvillian operator which describes losses due to the coupling
of the cavity mode to a heatbath.

The change in ρ(t) for the time τ is expressed by

δτ ρ(t) = Tr(A){U (τ)ρA ⊗ ρ(t)U (τ)†} − ρ(t), (6)

where Tr(A) is the trace with respect to atomic variables,
and U (τ) = exp(−iĤe f f τ) is the evolution operator of the
combined system.

The expression of the Liouvillian operator Lρ is given
by [14]

Lρ = 1
2 �(nb + 1)(2âρâ† − â†âρ − ρâ†â)

+ 1
2 �nb(2â†ρâ − ââ†ρ − ρââ†), (7)

where � is the damping rate of the cavity mode and nb is the
number of thermal photons in the resonator.

Using equations (1)–(7), one can obtain the master
equations for the �- and V-type micromasers. After a tedious
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calculation, we find the equations of motion for the density-
matrix elements which are suitable for both � type and V type

ρ̇k,l = R[Q1(k, l; τ) + Q2(k − 1, l − 1; τ) − 1]ρk,l

+ RQ3(k − 1, l − 1; τ)ρk−1,l−1

+ RQ4(k, l; τ)ρk+1,l+1 + 1
2�(nb + 1)

× [
2
√

(k + 1)(l + 1)ρk+1,l+1 − (k + l)ρk,l
]

+ 1
2 �nb

[
2
√

klρk−1,l−1 − (k + l + 2)ρk,l
]
, (8)

but the related coefficients Qi(k, l; τ) are obviously different
for these two cases, which are given in the appendix,
respectively.

Under the detailed balance, we can obtain the steady-state
PND Pn = ρn,n from equation (8). For � type, we have the
following PND (n � 1):

Pn = P0

n∏
l=1

nb + Nex [ρA
11 − Q1(l − 1, l − 1; τ)]/ l

(nb + 1) + Nex Q4(l − 1, l − 1; τ)/ l
. (9)

Similarly, one can obtain the following expression for V type
(n � 1):

Pn = P0

n∏
l=1

nb + Nex Q3(l − 1, l − 1; τ)/ l

(nb + 1) + Nex [ρA
11 − Q2(l − 1, l − 1; τ)]/ l

.

(10)
In equations (9) and (10), Nex = R/� is the average number of
atoms that traverse the cavity during the lifetime of the field and
the probability P0 is determined by the normalization condition∑∞

n=0 Pn = 1. Note that equation (9) can be reduced to the
result of [19] when �1 = �2 = 0.

By making use of the theoretical treatment in this section,
one can investigate photon statistics in the �- and V-type
systems. In the following section we will investigate the
photon statistics for the cavity mode. Without loss of
generality, we assume that g12 = g13 = g. Moreover, we
are only interested in the positive detunings. Throughout
the present paper, the detunings �1 and �2, and the energy
difference �, are in units of g, while the interaction time τ is
in units of g−1.

3. Photon intensity and sub-Poissonian properties

In this section, based on equations (9) and (10), we numerically
investigate the photon statistics by calculating the related
averages. We define the normalized mean photon number
n̄ and the normalized standard deviation of the photon
distribution σ

n̄ = 〈n〉/Nex , 〈n〉 =
∞∑

n=0

n Pn,

and 〈n2〉 =
∞∑

n=0

n2 Pn,

σ = [〈n2〉 − 〈n〉2 − 〈n〉]/〈n〉,

(11)

as a function of the dimensionless parameter θ given by

θ = gτ
√

Nex /π, (12)

which, in fact, plays the role of a pump parameter for the
micromaser. For σ = 0, the field is Poissonian; for σ > 0,

(a)

(b)

Figure 2. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ for various symmetrical
detunings when φ = π , ρ A

11 = 0.2, ρ A
22 = 0.4, Nex = 200 and

nb = 0.1.

the field is super-Poissonian; for σ < 0, however, the field
is sub-Poissonian and nonclassical. On the other hand, the
photon noises are enhanced for σ > 0, while they are reduced
for σ < 0. In the following, we set Nex = 200 and nb = 0.1.

3.1. The �-type micromaser

In [19], the authors predicted sub-Poissonian field states in
the noninversion�-type micromaser. Their theory is only
suitable for the two degenerate lower levels. Now we discuss
effects of the two nondegenerate lower levels on this interesting
phenomenon and the photon intensity when φ = π and 0.

In figure 2, we show the change of n̄ and σ with the energy
difference � (�1 = �2) when ρA

11 = 0.2, ρA
22 = ρA

33 = 0.4 and
φ = π . As shown in figure 2, with increasing �, n̄ decreases,
and the SPS becomes weak. When � = 4.0, the SPS has
disappeared although there is a significant amplification of the
photon intensity in the region of small θ . Note that the strong
SPS can exist in the cases of � � 2.0. Therefore, the SPS is
very sensitive to � when there is a very weak population in the
excited state.

In order to understand the above results, we should note the
physical meaning of Q4 in equation (9). From equation (A.1),
it is very obvious that Q4 corresponds to the absorption from
the lower levels |2〉 and |3〉 and to the interference between
the channels of transitions. For ρA

22 = ρA
33 and φ = π , Q4 is

equal to zero due to the interference when � = 0. In this case,
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(a)

(b)

Figure 3. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ for various symmetrical
detunings when φ = 0, ρ A

11 = 0.2, ρ A
22 = 0.4, Nex = 200 and

nb = 0.1.

Pn is the largest and very different from the thermal photon
distribution. With increasing �, Q4 increases, so that Pn

decreases. This is why n̄ decreases with increasing �. On the
other hand, Pn tends to be like the thermal photon distribution
with increasing �. Therefore, the SPS will disappear in larger
� cases.

If �1 is different from �2 under the same � (0.0 � � �
4.0), we found that there cannot exist a significant change in
the photon statistics compared to the case of �1 = �2. This
is very natural because there can only exist a slight difference
between the two lower levels when � is very small.

For φ = 0, this is another interference case. As �

increases, in contrast, Q4 becomes small and Pn is enhanced.
Some interesting changes will occur in the photon statistics.
This case is displayed in figure 3 (� � 4.0). As � increases,
the photon intensity is enhanced. For � = 15.0, for example,
the maximum n̄ is typically of the order of 0.2. From
figure 3(b), we observe the very strong SPS. For � = 4.0,
the minimum σ is typically of the order of −0.7 although the
maximum n̄ is only of the order of 0.05. With increasing �,
the SPS appears more frequently, while a slight influence is
imposed on the typical σ ′ value of −0.7. We should point
out that although � = 15.0 is very large, our predictions are
characteristic of the three-level system.

The trapping states (TSs) are another striking prediction
on micromaser dynamics [22] and are experimentally
observed [12]. This effect consists in a truncation of the PND at

(a)

(b)

Figure 4. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ for various asymmetrical
detunings (�1 + �2 = 10.0) when φ = 0, ρ A

11 = 0.2, ρ A
22 = 0.4,

Nex = 200 and nb = 0.1.

particular values of the photon number. Typically, these states
correspond to the sharp minima in the n̄–θ space. However,
we cannot observe such minima in figures 2(a) or 3(a). This is
due to the detunings that make them broadened. As shown in
figures 2(a) and 3(a), the large � cases have fully destroyed the
TSs. We observe that the cavity mode is fundamentally at the
thermal state of nb = 0.1 in some intervals of the interaction
time when � � 10.0. This means that the injected atoms may
be decoupled from the cavity mode at these times.

Based on figure 3, we now turn to the asymmetrical
detunings (�1 
= �2) when � = 10.0 is fixed. This is
presented in figure 4. For convenience, we define the deviation
δ = |�1−�2|. As the deviation δ is enhanced, in general, both
the photon intensity and the SPS become weaker and weaker.
When �1 = 1.0 and �2 = 9.0, the maximum n̄ is typically
of the order of 0.08, and the cavity mode has become super-
Poissonian. However, we should mention that in the interval
of θ from 4.0 to 6.0 the SPS becomes stronger in the case
of �1 = 3.0 and �2 = 7.0 than in the case of �1 = 4.0
and �2 = 6.0. On the other hand, a significant influence is
imposed on the TSs for large δ.

Even if there is no atomic coherence between the two
lower levels, sub-Poissonian field states can be also produced
in the noninversion �-type micromaser under the proper
population of the excited state. This conclusion holds true for
0.5 � ρA

11 � 0.45 when the symmetrical detunings exist in the
system. As shown later, the limit of ρA

11 can be relaxed for some
asymmetrical detunings. In figure 5 we present the change

405



S-D Du and Y Tanimura

(a)

(b)

Figure 5. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ for various symmetrical
detunings when ρ A

11 = 0.45, ρ A
22 = 0, Nex = 200 and nb = 0.1.

in the photon statistics with � for the case of ρA
11 = 0.45,

ρA
22 = 0 and ρA

33 = 0.55. As seen from figure 5(a), a larger
amplification of the photon intensity becomes possible in the
micromaser with increasing�. For the SPS, the optimal degree
is in turn equal to 11.0, 23.2, 22.8 and 10.0% for � = 1.0, 4.0,
8.0 and 12.0; see figure 5(b). We note that it needs a longer
interaction time for the larger � case to reach the optimal SPS.

Next we discuss the asymmetrical detunings when there
is no atomic coherence between the two lower levels. We only
deal with two cases: �1 = 0 (�2 varies) and �2 = 0 (�1

varies), which are presented in figures 6 and 7, respectively.
We observe from figure 6(a) that the curve is on the whole

shifted up with the increase of �, which is very different from
figure 5(a). It is obvious that the n̄ values in figure 6(a) are
in general larger than the corresponding ones in figure 5(a)
for the same � although they have the same population of
the excited state. As shown in figure 6(b), the SPS becomes
stronger and appears more frequently as � increases. This
feature, of course, is very different from that in figure 5(b).
The optimal SPS is in turn equal to 15.4, 30.6, 66.5 and 85.9%
for � = 1.0, 4.0, 8.0 and 12.0. This should be attributed to the
fact that the system is undergoing a transition from the three-
level configuration without inversion to the effective two-level
configuration with inversion with increasing �. If � � g, in
fact, we can adiabatically eliminate the level |2〉. In this case
the effective system is approximately equivalent to the two-
level system with the excited state |1〉 of ρA

11 = 0.45 and the
ground state |3〉 of ρA

33 = 0. Therefore the effective system
has the net inversion of 45%. We note that under the proper �

(a)

(b)

Figure 6. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ when �1 = 0 and �2

varies. Here ρ A
11 = 0.45, ρ A

22 = 0.55, Nex = 200 and nb = 0.1.

condition the present system is superior to the standard two-
level system in the SPS even if the latter has the inversion of
100% [7]. It is found, on the other hand, that for the large �

case the SPS can exist in the micromaser when the population
of the excited state is reduced. For ρA

11 = 0.1 and � = 12.0,
for example, the SPS can exist in a very wide interval of the
interaction time from θ = 2.0 to 7.4 and its degree is very high
up to 70.9%. In this case n̄ is typically of the order of 0.05.

For �2 = 0 (�1 varies), in contrast, the large �

values are unfavourable to the photon statistics, specially to
the SPS; see figure 7. When � is enhanced from 1.0 to
4.0, the optimal n̄ and SPS become stronger and stronger.
As � is further enhanced from 8.0 to 12.0, however, they
become weaker and weaker. For � = 12.0, the SPS
has disappeared, although the peak n̄ is large with the
order of 0.1. These phenomena should be attributed to the
fact that the system can be reduced to the effective two-
level configuration without population inversion from the
three-level configuration without population inversion with
increasing �.

Finally, our investigation indicates that under the
nondegenerate two lower levels it is always possible to produce
the strong sub-Poissonian states with a large number of photons
in the noninversion micromaser by adjusting θ , φ, �1 and �2.
We also note that in the two-level micromaser the SPS cannot
exist in the noninversion case [23]. In the SPS, therefore,
there exists a fundamental difference between the two-level
micromaser and the three-level micromasers including the
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(a)

(b)

Figure 7. Same as figure 6 but when �1 varies and �2 = 0.

V-type configuration which will be shown in the following
subsection.

3.2. The V-type micromaser

We start discussing the V-type micromaser. We are only
interested in the evolution of the photon statistics with the
ground-state population. As shown above, ρA

22 = ρA
33 and

�1 = �2 are in general the optimal conditions for quantum
interference. For atomic coherence, we are confined to the
two extreme cases: the maximum constructive interference
(MCI) (ρA

22 = ρA
33 and φ = 0) and the maximum destructive

interference (MDI) (ρA
22 = ρA

33 and φ = π). We also treat the
case without atomic coherence (CWAC) as a comparison.

For the full inversion (ρA
11 = 0.0), we present the photon

statistics for �1 = �2 = 5.0 in figure 8. On average, the
MCI is the most favourable to the amplification of the cavity
field, while the MDI is the most unfavourable; see figure 8(a).
From figure 8(b), however, we observe that the MDI is the
most favourable to the SPS because the latter can exist in
longer time intervals and its degree is the strongest. We noted
that the typical sub-Poissonian value is 89.8, 92.7 and 91.3%,
respectively, for the MCI, MDI and CWAC. It is obvious that
the SPS cannot exist in the MCI case for θ � 7.22. It is
interesting to note that there is one sharp minimum in the MCI
although �1 = �2 = 5.0 is large. This means that the TS
for the cavity mode may be existent in this interference case.
However, one cannot see this phenomenon in the MDI and
CWAC.

When a large population exists in the ground state, for
example, ρA

11 = 0.3, a significant influence is imposed on the

(a)

(b)

Figure 8. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ when ρ A

11 = 0 and
�1 = �2 = 5.0, Nex = 200 and nb = 0.1: φ = 0, ρ A

22 = ρ A
33 = 0.5

for the solid curve; φ = π , ρ A
22 = ρ A

33 = 0.5 for the dashed curve;
ρ A

22 = 0, ρ A
33 = 1.0 for the dotted curve.

photon statistics; see figure 9. As shown in figure 9(a), the field
intensity remarkably decreases in both the MCI and CWAC
compared to the full inversion. In the CWAC the peak values
are typically of the order of 5 × 10−2. We note that the cavity
field is fully around nb = 0.1 in some intervals for the MCI and
MDI. From figure 9(b), we observe that the SPS has become
very weak in the MCI and disappeared in the CWAC. For the
MCI, of course, the strong SPS is expected in the longer time
behaviour. It should be noted that the cavity field is strongly
sub-Poissonian up to 58% in the MDI.

We now turn to the noninversion cases. The case of
ρA

11 = 0.52 is presented in figure 10. From figure 10(a), we
observe that the cavity field becomes very weak, specially for
the MCI and CWAC. As seen from figure 10(b), the strong SPS
can be found in the long-time behaviour for both the MCI and
MDI. Obviously, the SPS can never exist in the CWAC.

We should discuss effects of the detuning parameters on
the photon statistics in the micromaser. For the MCI, in
general, the small symmetrical detunings are very helpful to
both the light amplification and SPS. The detunings inversely
become very detrimental to the SPS, however, if they are tiny.
When ρA

11 = 0.52 and ρA
22 = 0.24, for example, the SPS

can never exist in the double resonance (�1 = �2 = 0).
For the MDI, in contrast, the large symmetrical detunings are
favourable to the photon intensity and SPS. For the CWAC,
if ρA

22 = 0, the proper detuning deviations (�1 = 0) are very
favourable to the light amplification and SPS. We investigated
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(a)

(b)

Figure 9. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ when ρ A

11 = 0.3 and
�1 = �2 = 5.0, Nex = 200 and nb = 0.1: (1) φ = 0,
ρ A

22 = ρ A
33 = 0.35 for the solid curve, (2) φ = π , ρ A

22 = ρ A
33 = 0.35

for the dashed curve and (3) ρ A
22 = 0, ρ A

33 = 0.7 for the dotted curve.

the case when ρA
11 = 0.52 and ρA

22 = 0. As � is enhanced from
1.0 to 8.0 (�1 = 0), the largest n̄ approximately increases from
5 × 10−3 to 2 × 10−2 (θ � 30.0). Although we observed field
states with very strong SPS, the field intensity in these states
is very weak.

In conclusion, the way in which the photon statistics
responds to the change of the ground-state population is very
different in the MCI, MDI and CWAC. On average, the light
amplification and SPS in the quantum interference are superior
to those in the CWAC. It is possible to realize the optical
amplification in the noninversion micromaser even if there
is no quantum interference between the atomic transitions.
Although it is possible to produce the strongly sub-Poissonian
field states in the noninversion micromaser, even in the CWAC,
the field intensity in these states is so weak that it is difficult to
observe them in an experiment.

4. Summary and discussion

In this paper we have investigated the photon statistics in the
single-mode �- and V-type micromasers with injected three-
level atoms in a superposition of their internal states. We
have mainly discussed how the photon statistics responds to
quantum interference between the two transition channels and
compared the cases with and without quantum interference.
Our main aspects are summarized as follows.

(a)

(b)

Figure 10. The normalized mean photon number n̄ (a) and the
normalized standard deviation of the photon distribution σ (b) as a
function of the dimensionless parameter θ when ρ A

11 = 0.52 and
�1 = �2 = 5.0, Nex = 200 and nb = 0.1: (1) φ = 0,
ρ A

22 = ρ A
33 = 0.24 for the solid curve, (2) φ = π , ρ A

22 = ρ A
33 = 0.24

for the dashed curve and (3) ρ A
22 = 0, ρ A

33 = 0.48 for the dotted
curve.

(1) We have derived the general analytical expressions for
the PND in the �- and V-type cases, which are suitable
for any detunings between the field frequency and atomic
transition frequency.

(2) For the �-type case, we have discussed how detunings af-
fect the photon statistics of the noninversion micromaser.
Under the proper conditions strongly sub-Poissonian field
states with a large number of photons can be easily pro-
duced in this novel micromaser even if there exists no
coherence between the two lower levels.

(3) For the V-type case, we have analysed how the photon
statistics changes with increasing ground-state population.
Although the generation of the strongly sub-Poissonian
states is always possible in the micromaser under the
noninversion case, their photon intensities become very
weak compared to the �-type case even if there is strong
coherence between the two upper levels.

(4) Compared to the case without atomic initial coherence,
quantum interference can always enhance the photon
intensity and SPS by choosing proper φ values under the
same populations and detunings.

(5) Our results indicate that it is perfectly possible to
experimentally realize a noninversion micromaser with
strongly sub-Poissonian statistics in the �-type system.
However, it is perhaps very difficult to realize a similar
micromaser in the V-type configuration. As is well
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known, the field-intensity fluctuations (or shot noises) in
the case with an inversion population are in general larger
than those in the case without a inversion population.
Therefore, the shot noises in this novel micromaser are
significantly reduced, so that it will have a potential
application to precise measurements.
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Appendix

In this appendix, we will give the related coefficients
Qi(k, l; τ) in equation (8). For � type, we have

Q1(k, l; τ) = ρA
11

3∑
µ,ν=1

e−iλµ(k)τ+iλν (l)τ |Aµ(k)|2|Aν(l)|2,

Q2(k, l; τ) =
3∑

µ,ν=1

e−iλµ(k)τ+iλν (l)τ Eµ,ν(k, l)

× [Bµ(k)Bν(l)
∗ + Cµ(k)Cν (l)

∗],

Q3(k, l; τ) = ρA
11

3∑
µ,ν=1

e−iλµ(k)τ+iλν (l)τ Aµ(k)∗ Aν(l)

× [Bµ(k)Bν(l)
∗ + Cµ(k)Cν (l)

∗],

Q4(k, l; τ) =
3∑

µ,ν=1

e−iλµ(k)τ+iλν (l)τ

× Eµ,ν(k, l)Aµ(k)Aν(l)
∗, (A.1)

Eµ,ν(m, n) = ρA
22 Bµ(m)∗ Bν(n) + ρA

23 Bµ(m)∗Cν (n)

+ ρA
32Cµ(m)∗ Bν(n) + ρA

33Cµ(m)∗Cν (n),

Ai(n) = λi (n) + �2

g12

√
n + 1

Bi(n) ≡ Ãi(n)Bi (n),

Ci (n) = g13[λi (n) + �2]

g12[λi (n) − �1]
Bi(n) ≡ C̃i (n)Bi (n),

Bi(n) = 1/

√
| Ãi(n)|2 + 1 + |C̃i (n)|2.

For V type, however, the corresponding coefficients are given
by

Q1(k, l; τ) =
3∑

µ,ν=1

e−iλµ(k)τ+iλν (l)τ Wµ,ν(k, l)

× [αµ(k)αν(l)
∗ + βµ(k)βν(l)

∗],

Q2(k, l; τ) = ρA
11

3∑
µ,ν=1

e−iλµ(k)τ+iλν(l)τ |γµ(k)|2|γν(l)|2,

Q3(k, l; τ) =
3∑

µ,ν=1

e−iλµ(k)τ+iλν (l)τ Wµ,ν(k, l)γµ(k)γν(l)
∗,

Q4(k, l; τ) = ρA
11

3∑
µ,ν=1

e−iλµ(k)τ+iλν(l)τ γµ(k)γν(l)
∗

× [αµ(k)αν(l)
∗ + βµ(k)βν(l)

∗], (A.2)

Wµ,ν(m, n) = ρA
22βµ(m)∗βν(n) + ρA

23βµ(m)∗αν(n)

+ ρA
32αµ(m)∗βν(n) + ρA

33αµ(m)∗αν(n),

αi(n) = g13

√
n + 1

λi(n) − �1
γi(n) ≡ α̃i (n)γi(n),

βi(n) = g12

√
n + 1

λi (n) + �2
γi(n) ≡ β̃i(n)γi(n),

γi(n) = 1/

√
|α̃i(n)|2 + |β̃i(n)|2 + 1.

In equations (A.1), (A.2), λi(n) is the i th root of the eigenvalue
equation corresponding to equations (1) and (2). Note that
equations (1) and (2) have the same eigenvalues due to
symmetry. The expression of λi(n) is easily found to be
(i = 1, 2 and 3)

λi(n) = 2 3
√

r cos
[
η +

2

3
(i − 1)π

]
− �2 − �1

3
,

r =
√

−
(

�

3

)3

, η = 1

3
arccos

(
− q

2r

)
,

� = −[ 1
3 (�1

2 + �2
2 + �1�2)

+ g12
2(n + 1) + g13

2(n + 1)], (A.3)

q = 2

27
(�2 − �1)

3 +
�2 − �1

3
× [�1�2 + g12

2(n + 1) + g13
2(n + 1)]

+ [�1g12
2(n + 1) − �2g13

2(n + 1)].

References

[1] Hood C J, Lynn T W, Doherty A C, Parkins A S and
Kimble H J 2000 Science 287 1447

Pinkse P W H, Fischer T, Maunz P and Rempe G 2000 Nature
404 365

[2] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[3] First one-atom maser:

Meschede D, Walther H and Müller G 1985 Phys. Rev. Lett. 54
551

[4] First one-atom laser:
An K, Childs J J, Dasari R R and Feld M S 1994 Phys. Rev.

Lett. 73 3375
[5] Eberly J H, Narozhny N B and Sanchez-Mondragon J J 1980

Phys. Rev. Lett. 44 1323
[6] Meystre P and Zubairy M S 1982 Phys. Lett. A 89 390

Kuklinski J R and Madajczyk J L 1988 Phys. Rev. A 37 3175
[7] Rempe G and Walther H 1990 Phys. Rev. A 42 1650

Filipowicz P, Javanainen J and Meystre P 1986 Phys. Rev. A
34 3077

[8] Krause J, Scully M O and Walther H 1987 Phys. Rev. A 36
4547

Krause J, Scully M O, Walther T and Walther H 1989 Phys.
Rev. A 39 1915

[9] Gea-Banacloche J 1990 Phys. Rev. Lett. 65 3385
Gea-Banacloche J 1991 Phys. Rev. A 49 5913
Raimond J M, Brune M and Haroche S 1997 Phys. Rev. Lett.

79 1964
[10] Observation of quantum collapse and revival in a one-atom

maser:
Rempe G, Walther H and Klein N 1987 Phys. Rev. Lett.

58 353
[11] Observation of sub-Poissonian photon statistics in a

micromaser:

409



S-D Du and Y Tanimura

Rempe G, SchmidtKaler F and Walther H 1990 Phys. Rev.
Lett. 64 2783

[12] Preparing pure photon number states of the radiation field:
Weidinger M, Varcoe B T H, Heerlein R and Walther H 1999

Phys. Rev. Lett. 82 3795
[13] Observing Schrödinger-cat states:

Brune M, Hagley E, Dreyer J, Matre X, Maali A,
Wunderlich C, Raimond J M and Haroche S 1996 Phys.
Rev. Lett. 77 4887

[14] Scully M O and Zubairy M S 1997 Quantum Optics
(Cambridge: Cambridge University Press)

[15] Scully M O 1985 Phys. Rev. Lett. 55 2802
Scully M O and Zubairy M S 1987 Phys. Rev. A 35 752
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