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ABSTRACT: Dynamics of a one-dimensional Holstein molecular crystal model is investigated by making use of the hierarchical
equations of motion (HEOM) introduced by Tanimura and Kubo [J. Phys. Soc. Jpn. 1989, 104, 101]. Our extended, numerically
exact HEOM approach is capable of treating exciton−phonon coupling in a nonperturbative manner and is applicable to any
temperature. It is revealed that strong exciton phonon coupling leads to excitonic localization, while a large exciton transfer
integral facilitates exciton transport. Temperature effects on excitonic scattering have also been examined. A proof of concept, our
work also serves as a benchmark for future comparisons with other numerical approaches to Holstein polaron dynamics.

Modeling the dynamics of the Holstein polaron, a
quasiparticle that comprises an electronic excitation

interacting with a phonon cloud in its environs, is of great
importance to understanding transport mechanisms of charge
carriers in organic materials. Relaxation dynamics of polarons in
solids and liquids have garnered increasing attention due to the
rapid progress in ultrafast laser spectroscopy.1Recent advent of
femtosecond spectroscopic techniques have made it possible to
probe, for example, sustained intrachain electronic and vibra-
tional coherences in resonant energy transfer along conjugated
polymer chains of MEH-PPV (poly[2-methoxy-5-(2′-ethyl-
hexoxy)-1,4-phenylenevinylene]).2 Such quantum coherence
phenomena may play an essential role in efficient energy transfer
in organic photovoltaic (OPV) devices.
Theoretical study of the Holstein polaron dynamics can be

traced back to the seminal work of Holstein.3 Despite successful
interpretation of the temperature dependence of band narrowing
as well as the crossover from bandlike to hopping transport with
increasing temperature, the theory was at a perturbative level and
applicable only to narrow band systems. Various numerical
approaches have since been constructed to study static and
dynamic properties of the Holstein polaron in the past decades.
Approaches designed to probe properties of the ground state and
the low-lying excited states include exact diagonalization (ED),4,5

quantum Monte Carlo (QMC),6,7 variational methods,8−10

density matrix renormalization group (DMRG),11,12 and varia-
tional exact diagonalization (VED).13,14 Contrastingly, theoreti-
cal treatments of polaron dynamics have not received much-
deserved attention due to the elusiveness of reliable solutions.
In the 1970s, Davydov proposed the concept of “Davydov

soliton” and a mechanism to account for the biological energy
transfer in proteins,8 according to which energy released by an
enzymatic reaction can be stored and transported in the form of a
soliton. Subsequently developed were two Ansaẗze with varying
sophistication, specifically, the Davydov D1

15−17 and D2 trial
state, with the latter being a simplified version of the former.
Following the Dirac−Frenkel time-dependent variational
principle, a time-dependent Merrifield-type trial state18 with
zero crystal momentum was proposed to study ultrafast
relaxation dynamics of a photoexcited one-dimensional polar-
on.19 Time-dependent variational parameters specifying the trial
state were obtained by solving a set of coupled differential
equations. The Merrifield-type wave function, however, is only
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applicable to the narrow band regime, and realistic initial states
often come in a localized form. The Davydov Ansaẗze and their
variants that can take into account arbitrary initial states and have
built-in flexibility and variable sophistication for each practical
occasion have recently been engineered for dynamics of the
Holstein model as well as the energy transfer in light-harvesting
systems.20−23 Criteria were also established to gauge how
faithfully the trial wave functions follow the Schrödinger
equation. It is found that the Davydov D1 Ansatz and its variants
are sufficiently accurate in all parameter space but the very weak
coupling regime, in which the form of the trial state is not well-
suited to capture the plane-wave phonon wave functions. In
parallel, a dynamical framework based on a stochastic approach
to non-Markovian open quantum systems has been developed to
efficiently describe the quantum dynamics of an electronic
excitation coupled to a continuous phonon environment.24 In
addition, Spano has intensively studied the spectral signatures of
polarons in organic semiconductors using a reduced basis set
consisting of all one- and two-particle vibronic states.25,26

Starting from generic system-bath interaction Hamiltonian,
Tanimura derived the hierarchical equations of motion (HEOM)
for the reduced density matrix.27−32 It eliminates several well-
recognized limitations of the reduced equations of motion
approaches, involving rotating wave approximation, the white-
noise (Markovian) approximation, and the perturbative
approximant that is associated with the dynamical positivity
problem. The HEOM method takes into account non-
Markovian effects and nonperturbative system-bath interactions
at finite temperature in a numerically exact manner,33,34 and has
been widely used to study multidimensional spectroscopy,35−37

electron transfer processes,38,39 energy transfer processes in
photosynthetic antenna systems,40−42 and quantum informa-
tion.43−45 Furthermore, Yan and co-workers have extended the
HEOM to the Fermionic systems,46 as well as substantially
increased the efficiency of the approach by applying the Pade
spectrum decompositions of quantum distribution func-
tions.47,48 The purpose of this paper is to adapt a novel
HEOM formalism to study the Holstein polaron model for a
broad range of exciton−phonon coupling strengths. While the
applicability of the previous versions of HEOM for a Brownian
system or a variant of the spin-Boson model is limited to finite
temperatures, that of the present one is valid even at zero
temperature, because the HEOM in this work is expressed in
terms of discretized phonon modes instead of the Matsubara
expansion.
The one-dimensional Holstein molecular crystal model of N

sites with the periodic boundary condition can be written as3,49,50

̂ = ̂ + ̂ + ̂ −H H H Hex ph ex ph (1)

where

∑̂ = − ̂ ̂ + ̂†
+ −H J a a a( )

n
n n nex 1 1

(2)

is the Hamiltonian for a single Frenkel exciton band in a rigid
chain, ̂an( ̂an

†) is the annihilation (creation) operator of an exciton
at the nth site, and J is the nearest-neighbor transfer integral. The
bath degrees of freedom are described by

∑ ω̂ = ̂ ̂†
H b b

q
q q qph

(3)

where ̂bq( ̂bq
†) is the boson annihilation (creation) operator of a

phonon with momentum q and frequency ωq. The exciton−
phonon interaction is assumed to have a site diagonal form:

∑ ω̂ = − ̂ ̂ ̂ + ̂
−

=
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iqn
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where g is the dimensionless exciton−phonon coupling strength.
Here we assume a linear dispersion phonon band ωq = ω0[1 +

W(2|q|/π− 1) ] with q = (2π/N)l[l =−(N/2) + 1, ...,−1, 0, 1, ...,
(N/2), where the central frequency of the phonon band ω0 is
taken as the energy unit, i.e., ω0 = 1 and the bandwidth of the
phonon frequency is 2Wω0. It is noted that our model can
include multiple phonon branches with arbitrary dispersion
relations, each of which is described by different exciton−
phonon interactions.
Let us consider the exciton eigenstate at the nth site |n⟩= ̂an

†|
0⟩ex, where |0⟩ex represents the exciton vacuum. Then the
reduced density matrix element for the exciton system is
expressed in the path integral formwith the factorized initial state
as

∫ ∫ρ ρ′ = ′ ′

× ′ − ′

n n t n n n n t
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( , ; )eiS n t iS n t

0 0 0

[ ; ] [ ; ]
(5)

where S[n] is the action of the exciton system, and F[n, n′]is the
Feynman-Vernon influence functional given by
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Here, β is the inverse of temperature (β = 1/kBT), and we define

≡ − ′×V V n V n( ) ( )q q q (7)

° ≡ + ′V V n V n( ) ( )q q q (8)

with Vq* matrix representation of the operator ̂V q
† = g∑ ̂an n

† ̂ane
iqn.

Taking the derivative of eq 5, we have
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with the following superoperator defined as

ωΦ̂ = †×
t V t( ) ( )/2q q q

2
(10)

βωΘ̂ = ̂ ∓ ̂ °±
×t V t V t( ) ( ) coth( /2) ( )q q q q (11)

In order to derive the equation of motion, we introduce the
auxiliary operator ρm1±,m2±,···,mN±

(n,n′;t) by its matrix element as
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for non-negative integers m1±, m2±, ..., mN±. Note that ρ0̂.....0(t) =
ρ(̂t) and other auxiliary density matrices contain the complete
set of the information on the Liouville space wavepackets.
Differentiating ρm1±,m2±,···,mN±

(n,n′;t) with respect to t, we can
obtain the following hierarchy of equations in operator form
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The HEOM consists of an infinite number of equations, but they
can be truncated at a finite number of hierarchy elements by the
terminator as

∑ρ ω
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In principle, the HEOM provides an asymptotic approach that
allows us to calculate various physical quantities with any desired
accuracy by adjusting the number of hierarchical elements; the
error introduced by the truncation can be made negligibly small
by choosing the number of hierarchical elements to sufficiently
large. The total number of hierarchy elements is evaluated as Ltot
= (Ntrun + 2N)!/Ntrun!(2N)!, while the total number of
termination elements is Lterm = (Ntrun + 2N − 1)!/(2N − 1)!
Ntrun!, where Ntrun is the depth of hierarchy for mq±(q = 1,···,N).
In practice, we can set the termination elements to zero and thus
the number of hierarchy elements for calculation can be reduced
as Lcalc = Ltot − Lterm. The system we consider is a molecular ring
of N identical sites, and we vary the truncation number of
hierarchy Ntrun to confirm the convergence of the reduced
density matrix. The initial state of system is prepared to have one
exciton at site n = 0, i.e., we set the ρ0......0(0, 0) = 1, and all the
other matrix elements of ρm̂1±, m2±, ...,mN±

are set to 0.
Figure 1 displays the time evolution of exciton population for

various values of the transfer integral J at zero temperature. The
phonon bandwidthW and exciton−phonon coupling g are set to
0.5 and 0.1, respectively. As shown in Figure 1a−c, the incident
exciton at n = 0 generates left- and right-moving wave packets of
the exciton and make a quick rendezvous at the opposite site of

Figure 1.Time evolution of exciton population for (a) J = 0.2,W = 0.5, g = 0.1; (b) J = 0.5,W = 0.5, g = 0.1; (c) J = 1.0,W = 0.5, g = 0.1. The temperature
is set to zero (β = ∞).

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.5b01368
J. Phys. Chem. Lett. 2015, 6, 3110−3115

3112

http://dx.doi.org/10.1021/acs.jpclett.5b01368


the ring, where the recombined exciton density is sufficiently
high to trigger another pair of wave packets of the exciton. The
exciton wave packets propagate from the initial site n = 0 to the
entire chain with a speed that is proportional to transfer integral J
(the velocities of exciton propagation for Figure 1a−c are 2, 5, 10
in units of ω0/2π). This is because the group velocity of the
exciton wave packets, expressed as ∂Eex(k)/∂k with Eex(k) the
bare exciton band, is proportional to the exciton transfer integral
J (cf. eq 2).
The time evolution of exciton population in the intermediate

exciton−phonon coupling regime (g = 0.2) is shown in Figure 2.
The rest of the parameters are the same as in the case of Figure 1.
For small and intermediate transfer integrals (J = 0.2 and 0.5), the
exciton wave packets for g = 0.2 are found to bemuch slower than
that for the weak coupling case, g = 0.1 as revealed by a
comparison of the top two panels of Figures 1 and 2.
Interestingly, for a large transfer integral (J = 1.0), increase of
exciton−phonon coupling from 0.1 to 0.2 has a minor effect on
the speed of the exciton wave packets. This is because the
exciton−phonon interaction g2ω0 for g = 0.2 remains weak in
comparison to the exciton transfer integral J. However, the V-
shape propagation pattern after the first collision event at the
opposite site of the ring in Figure 1c is significantly weakened in
Figure 2c.
Next, we discuss the temperature effect on the evolution of the

exciton population. Figure 3 illustrates the time-dependent
exciton population at two temperatures (β = 2 and β = 1.25). The

rest of the parameter values are J = 0.5, W = 0.5, and g = 0.1.
Similarly to the case shown in Figure 1b, the left and right moving
wave packets of the exciton depart from the site of creation and
make a V-shape propagation until they collide at the opposite site
of the ring. As time goes on, we can see clear differences in the
exciton population (cf. Figure 1b and Figure 3a,b). The bright
spots shown in Figure 1b are significantly quenched in Figure
3a,b due to heightened thermal fluctuations.
To summarize, we have derived a novel HEOM formalism that

can treat a one-dimensional Holstein polaron in a non-
perturbative manner and at any temperature. We have achieved
this goal by expressing the HEOM in terms of discretized
phononmodes in place of theMatsubara expansion. It is revealed
that strong exciton phonon coupling leads to exciton localization,
while a large exciton transfer integral facilitates exciton transport.
Temperature effects on excitonic scattering have also been
examined. We would like to emphasize that our work here is a
proof of concept, one that also serves as a benchmark for future
comparisons with other numerically intensive approaches to
polaron dynamics.23 Applying our theory to the study of one-
dimensional Holstein model driven away from equilibrium by an
external electric field is straightforward.51 It is also of great
interest to use our HEOM formalism to probe quantum
dynamics of related Hamiltonians involving the Hubbard−
Holstein model52,53 and the t-J-Holstein model.54 The
fundamental connection between electronic correlation and
decoherence induced by electron−phonon coupling in mole-

Figure 2.Time evolution of exciton population for (a) J = 0.2,W = 0.5, g = 0.2; (b) J = 0.5,W = 0.5, g = 0.2; (c) J = 1.0,W = 0.5, g = 0.2. The temperature
is set to zero (β = ∞).
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cules and materials remains the key issue of investigation in
condensedmatter physics. Extensions of our HEOM approach in
these directions are in progress.
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