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Abstract

Multiple displaced oscillators coupled to an Ohmic heat-bath are used

to describe electron transfer (ET) in a dissipative environment. By per-

forming a canonical transformation, the model is reduced to a multi-level

system coupled to a heat-bath with the Brownian spectral distribution. A

reduced hierarchy equations of motion approach is introduced for numerically

rigorous simulation of the dynamics of the three-level system with various

oscillator configurations, for different nonadiabatic coupling strengths and

damping rates, and at different temperatures. The time evolution of the

reduced density matrix elements illustrates the interplay of coherences be-

tween the electronic and vibrational states. The ET reaction rates, defined as

a flux-flux correlation function, are calculated using the linear response of the

system to an external perturbation as a function of activation energy. The

results exhibit an asymmetric inverted parabolic profile in a small activation

regime due to the presence of the intermediate state between the reactant

and product states and a slowly decaying profile in a large activation energy

regime, which arises from the quantum coherent transitions.
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Chapter 1

Introduction

The analysis of electron transfer (ET) processes is of great interest to a va-

riety of researches in chemistry, biology, and physics.[1, 2, 3, 4, 5] Most ET

processes occur in condensed phases where the surrounding molecules provide

the fluctuations and dissipation needed in the reactions.[6, 7, 8, 9, 10] In a

widely used model for ET problems, the electronic states are coupled to an in-

termediate harmonic nuclear or intramolecular vibrational mode, which is in

turn coupled to a heat-bath.[11, 12] This model describes fundamental chem-

ical rate processes, interactions of a molecule with a dissipative and fluctuat-

ing environment,[7] and Marcus theory for non-adiabatic electron transfer.[4]

Further extensions of the model are used in laser spectroscopy to describe

the coupling of electronic states to vibrational modes[13] and the coupling of

electronic states in solids to phonons.[14] By adopting this description, one

may study ET processes by nonlinear optical measurements with, for exam-

ple, correlation function formalism based on the Liouville-space semiclassical

propagation scheme,[15, 16, 17] the diffusion-reaction equation method,[18]

the multistate quantum Fokker-Planck approach,[19, 20, 21] or the multilevel
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Redfield theory.[22, 23, 24] Tremendous insight was gained from this model

from quantitative analytical calculations[25, 26, 11, 12, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36] and numerical studies[37, 38, 19, 20, 21, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 25, 51, 52, 53, 26, 22, 23, 24, 54, 55, 56] stimulated by

experiments.[57, 58, 59, 60, 61, 62, 63, 18, 64]

Many aspects have been discussed individually under some limited regime.

In any approach, the full quantum treatment poses some difficult problems.

While quantum nonadiabatic transitions in the absence of the bath can be

studied by a wide variety of numerical methods based on the wavefunction,[65]

a reduced density operator has to be used in the presence of the bath in order

to study the irreversibility of system dynamics toward the thermal equilib-

rium state.[66]

In the ET case, the harmonic mode of a nuclear or an intramolecular

vibration can be included in the bath by carrying out a canonical transfor-

mation, which leads to a multi-level system coupled to the heat-bath with

the canonically transformed spectral distribution function.[11] Then the re-

duction of the bath degrees of freedom can be performed using projection

operator or path integral techniques.

While the projection operator approach and path integral approach are

formally exact,[67, 68] one has to employ some approximation to derive re-

duced equation of motion such as the multilevel Redfield equation,[37, 22,

23, 24] the mixed quantum-classical equations of motion,[25, 26] and stochas-

tic Liouville equations[38, 39, 42, 43, 44, 45] which can be solved numeri-

cally. The master equation approach requires several crucial assumptions,
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such as the rotating wave approximation, the white noise (or Van Hove)

approximation, and the factorized initial condition. These approximations

strongly limit the equation’s applicability especially at a low temperature,

where quantum effects play a major role. Time convolution-less master and

Redfield equations have a wider range of applicability; however, because both

equations depend upon the factorization assumption, they cannot be applied

to calculate the nonlinear response of the system dynamics arising from time-

dependent external perturbations.[69]

The path integral approach, where the reduced density matrix elements

are expressed in terms of the nonadiabatic interactions in functional form,

is powerful for a strong system-bath coupling.[11, 12, 27, 28, 29] However,

since this approach handles nonadiabatic coupling perturbatively, it is not

easy to study strong nonadiabatic (diabatic) coupling. Path integral Monte

Carlo simulations can remove this limitation, but their applicability is limited

because of the sampling processes.[40, 41] Note that the linear and nonlin-

ear optical response functions obtained from cumulant expansion approaches

have a similar form as the perturbative results from path integrals, since laser

interactions play a similar role as the nonadiabatic coupling. [15, 16, 17]

To eliminate all of the above mentioned limitations, one can derive the

hierarchy equations of motion for the reduced density matrix by differen-

tiating the reduced density matrix elements defined by path integrals.[66]

This approach was first introduced to investigate the connection between

the phenomenological stochastic Liouville equation theory and the dynam-

ical Hamiltonian theory, and was limited to the case in which the spec-
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tral distribution function is given by the Drude form (Ohmic form with a

Lorentzian cutoff) and the bath temperature is relatively high.[70] By in-

cluding low temperature corrections terms, the temperature limitation can

be eliminated.[71, 72, 73, 66, 74] This formalism is valuable since it can handle

not only the strong system-bath coupling but also quantum coherence be-

tween the system and bath which plays an important role for the electronic

energy transfer (EET) in photosynthetic antenna system.[75, 76]

Although the form of hierarchy becomes complicated, it is possible to de-

rive the hierarchy equations of motion for nonOhmic spectral distributions.[71]

If one applies the hierarchy formalism to the Brownian spectral distribution

that arises from the canonical transformation of ET system, one can handle

the ET problem in a nonperturbative manner for both the system-bath and

nonadiabatic couplings.[19] While the previously derived hierarchy equations

for a two-state ET system cannot be applied to a low-temperature system,

where the quantum transition plays a major role, we can remove this limita-

tion by introducing the low temperature correction terms for the Brownian

spectral distribution hierarchy.[77] Moreover, we can formulate the equations

of motion for a multistate system, where the interplay between the sequential

and super-exchange ET transitions1 becomes important.[30, 40, 32, 33, 34,

1The ET process of the three-state electronic system is often depicted in terms of the
sequential mechanism and the super-exchenge. When the free energy of the intermediate
state is close to or lower than the thermal energy kBT , the ET occurs by the sequential
mechanism, in which the ET from the intermediate state to the final takes place after the
thermalization of phonons in the intermediate state. On the other hand, when the free
energy of the intermediate state is much higher than kBT , the ET occurs unistep from
the initial state to the final by the super-exchange mechanism, in which the intermediate
state is passed as a quantum mechanical virtual state.[32, 33, 34, 35, 36, 62]
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35, 36, 31]

A typical example of three-state problem is bacterial photosynthesis where

the ET takes place between the excited special pair to the bacteriopheo-

phytin mediated by the accessory chlorophylI monomer stationed in between

them.[78] Many experimental and theoretical studies have carried out to ex-

plore the mechanism of the primary ET step in photosynthetic bacteria.

[58, 59, 60, 61, 41, 32, 33, 34]

In this paper, we present a complete study of the various nonperturbative

regimes of electron transfer processes, using the hierarchy of quantum kinetic

equations. The present numerical study allows us to demonstrate a number

of the features arising from the interplay between quantum nonadiabatic

transition and dissipation. The organization of this paper is as follows: the

model Hamiltonian and canonical transformed Hamiltonian are presented in

the chapter 2. In the chapter 3 the hierarchy equations of motion for Brown-

ian spectral distribution with low temperature correction terms is presented.

Time evolution of a three-state system is studied by numerically solving the

hierarchy equations over wide parameter ranges in the chapter 4. The ET

rates as the function of temperature and activation energy are presented and

discussed in the chapter 5. The last chapter is devoted to concluding remarks.
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Chapter 2

The Model

We consider the case that the electronic energy states depend on nuclear

configuration. The simplified model for this is harmonic oscillators system

displaced along a reaction coordinate with different excitation energies (see

Fig. 2.1).

We denote the coordinate, momentum, mass and frequency of the single

harmonic mode by Q, P , M , and ω0, respectively. To distinguish from the

bath mode, hereafter we refer this mode as the (P , Q) oscillator mode. In

this paper, we limit our analysis to the three-state case, since the extensions

to more than four states are straightforward. The oscillator states further

coupled to the bath state represented by an ensemble of harmonic oscillators.

A commonly used model for ET problems is then expressed as[11, 12]

Ĥ = ĤA −
3∑
j=1

Mω2
0QdjD|j〉〈j|+

P 2

2M
+

1

2
Mω2

0Q
2

+
∞∑
α

{
p2
α

2mα

+
1

2
mαω

2
α

(
xα −

cα
mαω2

α

Q

)2
}
, (2.1)
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Figure 2.1: Schematic view of a three-state system coupled to a harmonic
mode. The parabolic potential for the state |j〉 has the vertex (dj, Ω′j), where
Ω′j = Ωj − λd2

j . The red, green, and blue lines are for the |1〉, |2〉, and |3〉
states, respectively. Here, parameters are the same as at the beginning of
the chapter 3.

where the system Hamiltonian is defined by

ĤA =
3∑
j=1

~Ωj|j〉〈j|+
3∑

j=1,k 6=j

~∆jk|j〉〈k|. (2.2)

Here, ~Ωj is energy of the electronic state |j〉, and ~∆j,k is the transfer

coupling between the j and k-th states, and djD represents the displacement

of the (P , Q) oscillator for |j〉, where D is the characteristic length of the

system. xα, pα, mα, and ωα denote the coordinate, momentum, mass and

frequency of the bath mode α. The constant cα is the coupling strength

to the mode α. The character of the bath is determined by the spectral

distribution function J(ω) =
∑∞

α c2
αδ(ω − ωα)/(2mαωα). Here we consider

the Ohmic case that is defined by J(ω) = Mγω.

By performing the canonical transformation,[11] the Hamiltonian of this

model is converted to that of the three-state system directly coupled to a bath
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of infinite harmonic oscillators with a significantly different bath spectral

density,[77]

Ĥ = ĤA − V̂
∞∑
α

c′αx
′
α +

∞∑
α

(
p
′2
α

2m′α
+

1

2
m′αω

′2
αx
′2
α

)
, (2.3)

where the system-bath coupling V̂ is written as

V̂ =
3∑
j=1

dj|j〉〈j|, (2.4)

and x′α, p′α, m′α, ω′α, and c′α are the transformed α-th coordinate, momen-

tum, mass, frequency, and the coupling strength, respectively. The spectral

distribution function J(ω) =
∑∞

α c
′2
α δ(ω − ω′α)/(2m′αω

′
α) is also transformed

as[11]

J(ω) =
2~λ
π
· γω2

0ω

(ω2
0 − ω2)2 + γ2ω2

, (2.5)

where λ = MD2ω2
0/2~ with the fixed D. We refer the above spectral distri-

bution as the Brownian form since it arises from the correlation function of

the Brownian oscillator system (see Appendix A).[27, 29, 28] The distribu-

tion is characterized by the characteristic frequency ω0, the displacement λ,

and the coupling strength between the (P , Q) oscillator and the bath γ and

the peak position and the peak width of J(ω) change with γ (see Fig. 2.2).

If the potential surface of the (P , Q) mode are anharmonic, one has to

explicitly deal with the (P ,Q) degrees of freedom by employing the multi-

state descriptions of the quantum kinetic equation[20, 21] or semi-classical

kinetic equation.[25, 39, 26] However, if the (P , Q) potential is harmonic,

we can reduce the (P , Q) degrees of freedom into the bath, which allows us

to simplify the ET problem and to save the CPU power dramatically. This
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simplification is necessary to handle the multi-dimensional hierarchy arising

from the low-temperature correction terms.[71, 72, 73, 66, 74]
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Chapter 3

Hierarchy Equations of Motion
for the Reduced Density
Matrix Elements

The reduced density matrix of this system can be treated by the path-integral

formalism by utilizing the coherent state representation.[79] While the con-

ventional coherent state representation is for two-state system,[70, 80] here

we extend it for three-state as |ψ〉 = |0〉 + |1〉φ1 + |2〉φ1φ2, where φ is a

Grassmann number. Since |ψ〉 is not orthogonal, the completeness relation

is then expressed as∫
dψ̄dψ|ψ〉〈ψ|e−φ̄1φ̄2φ1φ2−φ̄2φ2

≡
∫
dφ̄1dφ̄2dφ2dφ1|ψ〉〈ψ|e−φ̄1φ̄2φ1φ2−φ̄2φ2

= 1, (3.1)

where 〈ψ| = 〈0|+ φ̄2〈1|+ φ̄2φ̄1〈2|. Hereafter ψ represents a set of two Grass-

mann numbers {φ1, φ2}. The following procedure to derive the equation of

motion is parallel to that in the high-temperature Drude distribution case.[70]
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In order to have the reduced density matrix elements in a compact form, we

employ a temporary initial condition of the total system in the factorized

form as ρ̂A(t0)⊗ ρ̂eqB , where ρ̂eqB is the equilibrium density matrix of the bath.

This assumption can be removed once we derive the equations of motion

by setting t0 � −Ωc and by integrating up to time the t = 0, where Ωc

is characteristic relaxation time of the system, to have the correlated initial

condition at t = 0.[66]

The reduced density matrix element is expressed in the path integral form

as

ρ(ψ̄, ψ′; t) =

∫
D[ψ(τ)]D[ψ̄(τ)]D[ψ′(τ)]D[ψ̄′(τ)]

×eiSA[ψ̄,ψ]/~F [ψ̄, ψ, ψ̄′, ψ′; t]e−iSA[ψ̄′,ψ′]/~, (3.2)

where
∫
D[ψ(τ)] represents the functional integral of a set of Grassmann vari-

ables ψ = {φ1, φ2} which describe the three of the system states. The action

for the system’s Hamiltonian Eq. (2.2) is denoted by SA[ψ̄, ψ]. Feynman-

Vernon influence functional which describes the bath effects is denoted by

F [ψ̄, ψ, ψ̄′, ψ′; t].[81, 68]

The bath degrees of freedom can be reduced by performing the path

integrals for the coordinate x′α, which leads to the influence functional in the

form[68]

F [ψ̄, ψ, ψ̄′, ψ′; t] = exp

[
−1

~

∫ t

t0

ds

∫ s

t0

duV ×(s)

×
(
−iL1(s− u)V ◦(u) + L2(s− u)V ×(u)

)]
, (3.3)

where V ×(t) ≡ V (ψ̄(t), ψ(t)) − V (ψ̄′(t), ψ′(t)) and V ◦(t) ≡ V (ψ̄(t), ψ(t)) +

V (ψ̄′(t), ψ′(t)) are the commutator and anticommutator of V̂ expressed in
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the coherent state representation of sets of Grassmann numbers. The time-

dependent kernels corresponding to the dissipation L1(t) ≡ 〈[Q(t), Q]〉/~ and

fluctuation L2(t) ≡ 〈Q(t)Q + QQ(t)〉/2~ induced by the bath are expressed

by the spectral distribution as

L1(t) =

∫ ∞
0

dωJ(ω) sin(ωt) (3.4)

and

L2(t) =

∫ ∞
0

dωJ(ω) coth (β~ω/2) cos(ωt), (3.5)

respectively.[66, 70, 68] For eq. (2.5), we have

L1(t) =
~λω2

0

2iζ

{
e−( γ2−iζ)t − e−( γ2 +iζ)t

}
(3.6)

and

L2(t) = −4λγω2
0

β

∞∑
k=1

νk
(ω2

0 + ν2
k)2 − γ2ν2

k

e−νkt

+
~λω2

0

2ζ
e−( γ

2
−iζ)t coth

(
β~
2

(
ζ + i

γ

2

))
−~λω2

0

2ζ
e−( γ

2
+iζ)t coth

(
β~
2

(
−ζ + i

γ

2

))
, (3.7)

where ζ =
√
ω2

0 − γ2/4 for γ < 2ω0 and νk = (2π/β~)k with 2π/β~ being

the Matsubara frequency. Submitting Eqs. (3.6) and (3.7) into Eq. (3.8)

and rearranging terms, we can express the influence functional as[77]

F [ψ̄, ψ, ψ̄′, ψ′; t] = exp

[
−
∫ t

t0

ds

∫ s

t0

duV ×(s)

×
(

Θ−(u)e−( γ
2
−iζ)(s−u) + Θ+(u)e−( γ

2
+iζ)(s−u)

)]
× exp

[∫ t

t0

ds

∫ s

t0

duV ×(s)
∞∑
k=1

Ψk(u)νke
−νk(s−u)

]
,(3.8)
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where

Θ±(u) =
λω2

0

2ζ

{
± coth

[
β~
2

(
∓ζ

2
+ i

γ

2

)]
V ×(u)∓ V ◦(u)

}
, (3.9)

and

Ψk(u) =
4λ

β~
γω2

0

(ω2
0 + ν2

k)2 − γ2ν2
k

V ×(u). (3.10)

If we choose K so as to satisfy

νK =
2π

β~
K � max{Ωl − Ωm}l,m, (3.11)

the function e−νk(s−u) for k ≥ K in Eq. (3.8) can be replaced by Dirac’s delta

function νke
νk(s−u) ' δ(s− u). This leads the influence functional Eq. (3.8)

to

F [ψ̄, ψ, ψ̄′, ψ′; t] ' exp

[
−
∫ t

t0

ds

∫ s

t0

duV ×(s)

×
(

Θ−(u)e−( γ
2
−iζ)(s−u) + Θ+(u)e−( γ

2
+iζ)(s−u)

)]
× exp

[∫ t

t0

ds

∫ s

t0

duV ×(s)
K∑
k=1

Ψk(u)νke
−νk(s−u)

]

× exp

[∫ t

t0

dsΞ(s)

]
, (3.12)

where

Ξ(s) = V ×(s)
∞∑

k=K+1

Ψk(s). (3.13)

The equation of motion for the reduced density operator can be derived by

evaluating the time derivative of the left- and right- hand-side wave functions

and the influence functional. [70, 72, 66, 71, 73, 74] We consider the auxiliary

matrix defined by

ρ
(n,m)
j1,j2,...,jK

(ψ̄, ψ′; t) =

∫
D[ψ̄(τ)]D[ψ(τ)]D[ψ̄′(τ)]D[ψ′(τ)]

×eiSA[ψ̄,ψ]/~F
(n,m)
j1,··· ,jK [ψ̄, ψ, ψ̄′, ψ′; t]e−iSA[ψ̄′,ψ′]/~, (3.14)
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where

F
(n,m)
j1,··· ,jK [ψ̄, ψ, ψ̄′, ψ′; t] =

{∫ t

t0

duΘ−(u)e−( γ2−iζ)(t−u)

}n
×
{∫ t

t0

duΘ+(u)e−( γ2 +iζ)(t−u)

}m
×

K∏
k=1

{∫ t

t0

duΨk(u)e−νk(t−u)

}jk
F [ψ̄, ψ, ψ̄′, ψ′; t]. (3.15)

The reduced density matrix element at t is represented as ρ
(n,m)
j1,j2,··· ,jK (ψ̄f , ψ

′
f ; t)

and then that at t+ ε is obtained in the path integral form by inserting the

completeness relation into the reduced density matrix at t by

ρ
(n,m)
j1,··· ,jK (ψ̄f , ψ

′
f ; t+ ε) = T

(∫
dψ̄dψdψ̄′dψ′

×e−φ̄1φ̄2φ1φ2−φ̄2φ2

×〈ψf |e−
i
~ ĤAε|ψ〉〈ψ|e−

i
~ ĤA(t−t0)|ψ0〉

×F (n,m)
j1,j2,··· ,jK (t+ ε)〈ψ′0|e

i
~ ĤA(t−t0)|ψ′〉〈ψ′|e

i
~ ĤAε|ψ′f〉.

× e−φ̄
′
1φ̄
′
2φ
′
1φ
′
2−φ̄′2φ′2

)
. (3.16)

We expand both sides of Eq. (3.16) with respect to ε and integrate the

right side with respect to Grassmann numbers ψ̄, ψ, ψ̄′, and ψ′ following the

Berezin’s rule.[79]

24



Then by taking the limit ε to 0, we have

∂

∂t
ρ

(n,m)
j1,··· ,jK (ψ̄f , ψ

′
f ) =

∫
dψ̄dψdψ̄′dψ′

×
{
−
[
i

~
(
HA(ψ̄f , ψ)−HA(ψ̄′, ψ′f )

)
+

(n+m)γ

2

−i(n−m)ζ +
K∑
k=1

jkνk − Ξ̂

]
ρ

(n,m)
j1,··· ,jK (ψ̄, ψ′; t)

+V ×ρ
(n+1,m)
j1,··· ,jK (ψ̄, ψ′; t) + nΘ−ρ

(n−1,m)
j1,··· ,jK (ψ̄, ψ′; t)

+V ×ρ
(n,m+1)
j1,··· ,jK (ψ̄, ψ′; t) +mΘ+ρ

(n,m−1)
j1,··· ,jK (ψ̄, ψ′; t)

+
K∑
k=1

V ×ρ
(n,m)
j1,··· ,jk+1,··· ,jK (ψ̄, ψ′; t)

+
K∑
k=1

jkνkΨkρ
(n,m)
j1,··· ,jk−1,··· ,jK (ψ̄, ψ′; t)

}
, (3.17)

where V × ≡ V (ψ̄f , ψ) − V (ψ̄′, ψ′f ) and V ◦ ≡ V (ψ̄f , ψ) + V (ψ̄′, ψ′f ). Θ±,

Ψk, and Ξ are obtained by replacing V̂ × → V × and V̂ ◦ → V ◦ in equations

(3.9)-(3.13) . The equation (3.17) is converted to the hierarchy equations of

motion in operator form as

d

dt
ρ̂

(n,m)
j1,··· ,jK (t) = −L̂(n,m)ρ̂

(n,m)
j1,··· ,jK (t)

+V̂ ×ρ̂
(n+1,m)
j1,··· ,jK (t) + nΘ̂−ρ̂

(n−1,m)
j1,··· ,jK (t)

+V̂ ×ρ̂
(n,m+1)
j1,··· ,jK (t) +mΘ̂+ρ̂

(n,m−1)
j1,··· ,jK (t)

+
K∑
k=1

V̂ ×ρ̂
(n,m)
j1,··· ,jk+1,··· ,jK (t)

+
K∑
k=1

jkνkΨ̂kρ̂
(n,m)
j1,··· ,jk−1,··· ,jK (t), (3.18)
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where

L̂(n,m) =
i

~
Ĥ×A +

(n+m)γ

2
− i(n−m)ζ +

K∑
k=1

jkνk − Ξ̂ (3.19)

and Θ̂±, Ψ̂k, and Ξ̂ are the operator forms of Eqs. (3.9), (3.10), and (3.13)

which are obtained by replacing V ×(t)ρ with V̂ ρ̂(t) − ρ̂(t)V̂ and V ◦(t)ρ(t)

with V̂ ρ̂(t) + ρ̂(t)V̂ .

As can be seen from the form of equations, the (n,m, j1, · · · , jK)th mem-

ber of the hierarchy is coupled to the lower- and higher-order members as

ρ̂
(n±1,m)
j1,··· ,jK , ρ̂

(n,m±1)
j1,··· ,jK , ρ̂

(n,m)
j1±1,··· ,jK , etc. In this approach, the 0th member of the

hierarchy is the exact solution of the total Hamiltonian Eq. (2.3) defined by

ρ̂
(0,0)
0,··· ,0(t) = trx′α{ρ̂tot(t)} and it includes all orders of the system-bath inter-

actions. Then the orders of system-bath interactions in ρ̂
(n,m)
j1,··· ,jK (t) are lower

than that in ρ̂
(0,0)
0,··· ,0(t) by N (N ≡ n + m +

∑
k jk), since we defined the

time derivative of F in Eq. (3.15) by excluding the factor (V ×)N . Thus,

the present approach conceptually differs from the conventional perturba-

tive expansion approaches; in such approaches, the 0th member includes no

system-bath interactions and thus higher members take into account higher-

order system-bath interactions.[66] Because of this hierarchical structure, we

can handle strong system-bath interactions and non-white-noise baths.

To truncate the infinite hierarchy, we formally solve the eq. (3.18):

ρ
(n,m)
j1,··· ,jK =

∫ t

t0

dτeL(t−τ)g(τ), (3.20)

where

L = −

[
i

~
Ĥ×A +

(n+m)γ

2
− i(n−m)ζ +

K∑
k=1

jkνk − Ξ̂

]
(3.21)
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and

g(τ) = V̂ ×ρ̂
(n+1,m)
j1,··· ,jK (τ) + nΘ̂−ρ̂

(n−1,m)
j1,··· ,jK (τ)

+V̂ ×ρ̂
(n,m+1)
j1,··· ,jK (τ) +mΘ̂+ρ̂

(n,m−1)
j1,··· ,jK (τ)

+
K∑
k=1

V̂ ×ρ̂
(n,m)
j1,··· ,jk+1,··· ,jK (τ)

+
K∑
k=1

jkνkΨ̂kρ̂
(n,m)
j1,··· ,jk−1,··· ,jK (τ). (3.22)

If the condition

n+m+
K∑
k=1

jk = Nmax �
max{Ωl − Ωm}l,m

min
(
γ
2
, ν1

) , (3.23)

is satisfied, (n+m)γ
2

+
∑K

k=1 jkνk is much larger than the characteristic time of

the main system {Ωl − Ωm}lm because Γ(n,m) ≥ Nmax min
(
γ
2
, ν1

)
. Then Eq.

(3.21) is approximated as

Γ(n,m)eΓ(n,m)(t−τ) ' δ(t− τ), (3.24)

which leads Eq. (3.18) to the terminator

d

dt
ρ̂

(n,m)
j1,··· ,jK (t) = −

[
i

~
Ĥ×A − i(n−m)ζ − Ξ̂

]
ρ̂

(n,m)
j1,··· ,jK (t). (3.25)
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Chapter 4

Time-evolution of the Density
Matrix Elements

We fix the frequency of the oscillators in the (P , Q) space as ω0 = 500cm−1

(1/ω0=66.7fs) and used it as the unit of the system. The vibrational motion

along the reaction coordinate is in quantum regime at room temperature,

since we have β~ω0 = 2.40 for the temperature T = 300K.

Throughout this paper, we also fix the energies of |3〉 as Ω3 = 0, the

nonadiabatic coupling between |1〉 and |3〉 as ∆13 = ∆31 = 0 and the in-

dividual coupling constants between the electronic state and the oscillator

mode as d1 = −0.5, d2 = 0, and d3 = 0.5. The displacement of the (P , Q)

oscillators λ, the coupling strength between the oscillators and the bath γ,

the temperature T , the energy of the initial and the intermediate state Ω1

and Ω2 are then changed independently to study the parameter dependence

on the time evolution of the density matrix and the ET reaction rate.

In the chapters 3 and 4 we set Ω2 = −ω0, ∆12 = ∆21 = 0.1ω0 and

∆23 = ∆32 = 0.1ω0 unless otherwise noted.
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To calculate the time-evolution of the density matrix elements, we set the

initial populations as ρ1(0) = 1 and ρ2(0) = ρ3(0) = 0, where ρj(t) represents

the population of the |j〉 state at time t. Experimentally such initial condition

can be prepared by applying a short laser pulse to instantaneously excite the

|1〉 state from other outside states (neither |2〉 nor |3〉).

Hierarchy equations of motion for the reduced density matrix Eqs. (3.18)

and (3.25) are then solved via the fourth-order Runge-Kutta method, in

which the time step is 0.01/ω0. We chose the depth of the hierarchy and the

truncation number of the hierarchy K = 5 and N = 15 for a low temperature

case (T = 10K), K = 3 and N = 15 for intermediate temperature cases

(120K ≤ T ≤ 600K), K = 2 and N = 15 for T = 900K, and K = 1

and N = 15 for high temperature cases (T ≥ 1500K), respectively. For all

calculations, the accuracies were checked by changing the values of K and

N .

4.1 Effects of the displacement λ

Figures 4.1(a)-(e) show the time-evolution of the density matrix elements

for various displacements of the (P , Q) oscillators represented by λ. Here,

we chose γ = 0.1ω0 and T = 300K. Fig. 4.1 (a) illustrates the case that

the displacements between the oscillators are zero (λ = 0). In this case,

the profiles of wavepackets in each (P , Q) potentials in the |1〉, |2〉, and |3〉

states do not change via the nonadiabatic transitions due to their optical

Condon transition like character. [27, 28, 29] Since the heat-bath can affect

the system only through the (P , Q) space wavepacket dynamics and the
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Figure 4.1: Time-evolution of the density matrix elements for the different
displacement of (P, Q) oscillators λ =(a) 0, (b) 0.04ω0/π, (c) 0.4ω0/π, (d)
4ω0/π, and (e) 12ω0/π. We chose γ = 0.1ω0, Ω2 = −ω0, and T = 300K.
In each figures, the red, green, and blue lines show ρ1(t), ρ2(t), and ρ3(t),
respectively. We employ (d) λ = 4ω0/π as the reference in 4.2-5.
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wavepackets are already in the equilibrium profiles with the temperature T ,

the heat-bath does not play any role if the displacement D is zero. Thus,

the time-evolution of ρj(t), which reflects not the profile but the population

of the jth wavepackets, exhibits only coherent motions between the three

states. The frequencies of coherent motion can be analyzed by diagonalizing

the three-state Hamiltonian described by Ωj and ∆jk. Then the time evo-

lution ρ1(t) is, for example, characterized by three frequencies ΩR = 1.04ω0,

ε−/~ = 1.02ω0 and ε+/~ = 0.0196ω0, corresponding to the three transition

frequencies between eigenstates (see Appendix B). This feature is peculiar to

the multi-state system in contrast to the two-state case, where the motion is

characterized by the Rabi frequency in NMR.

As λ increases, the energy exchange between the |j〉 states and the bath

becomes efficient and the low frequency part of the coherent motion is sup-

pressed as illustrated Figs. 4.1 (b) and (c). The population of |1〉 undergoes

the transition to |3〉 and eventually decays exponentially as illustrated in Fig.

4.1 (d). If the λ becomes even larger, ρj(t) quickly reaches to its equilibrium

value as can be seen in Fig. 4.1 (e). If we regard the canonically transformed

(P , Q) oscillator plus bath system as the bath for the three-state system, the

conditions in Figs. 4.1 (d) and (e) are in the strong system-bath coupling

regime which could not be handled by other reduced equation of motion ap-

proaches. If we adopt this picture, the coupling to the transformed bath

causes frequency modulations of |j〉 and thereby shifts the eigen energies of

|1〉 and |3〉 states to Ω′1 = Ω1 − λ/4 and Ω′3 = Ω3 − λ/4, respectively. Thus,

while the equilibrium populations ρeq2 decrease, those of ρeq1 and ρeq3 increase
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for large λ as illustrated in Figs. 4.1 (c)-(d).

4.2 Effects of the oscillator-bath coupling strength

γ

The parameter γ represents the coupling strength between the (P , Q) mode

and the bath. It reflects the time-evolution of ρj(t) through J ′(ω) defined by

Eq. (2.5). In Fig. 4.2, we display ρj(t) for different γ for fixed λ = 4ω0/π.

The other parameters are the same as in Fig. 4.1. Fig. 4.2 (a) γ = 0.01ω0

is an underdamped case, whereas (c) γ = ω0 is an overdamped case for the

(P , Q) space wavepacket motion.

In this model the (P ,Q) oscillator becomes a part of the bath, so that the

relaxation of this oscillator to thermal equilibrium must be much faster than

the electron transfer process. This means that for small γ the ET reaction

rate must be much smaller than γ.[67] We have checked that the choice of γ

in the present study satisfies this criteria.

When γ increases, the oscillatory motions in the (P , Q) potentials are

suppressed as can be seen from Figs. 4.2 (a)-(c). Note that the effective

coupling strength between the three-level system and the canonically trans-

formed bath is evaluated as J ′(ω = Ω)/Ω,[82] where Ω is a characteristic

frequency of the three-state system. Thus, ρj(t) reaches their equilibrium

values faster when γ becomes larger because J ′(ω = Ω)/Ω becomes larger.

The strength of the effective damping for fast components ΩR and ε−/~

is in the order of (b)>(a)>(c), whereas that for slow components ε+/~ is

(c)>(b)>(a), which results in the fact that the relaxation profiles of ρj(t) are
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Figure 4.2: Time-evolution of the density matrix elements for different
oscillator-bath coupling γ =(a) 0.01ω0, (b) 0.1ω0, and (c) ω0. We set
λ = 4ω0/π, so that the case (b) 0.1ω0 agrees with Fig. 4.1 (d). The other
parameters are the same as Fig. 4.1. In each figures, the red, green, and blue
lines show ρ1(t), ρ2(t), and ρ3(t), respectively.
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different even for the same λ.

4.3 Effects of the temperature T

Figures 4.3 (a)-(d) show the time evolution of ρj(t) for various temperatures

T . In these figures, the displacement is chosen to give λ = 4ω0/π. The

other parameters are the same as those in Fig. 4.1. When T goes down,

the population of the |2〉 state increases since the energy of this state is

the lowest in the present oscillators configuration. At any temperature fast

oscillations are the result of (P , Q) motion. When T goes down, the low-

frequency oscillation originating from the transition between the electronic

states becomes prominent. This is because the excited state motion of the (P ,

Q) mode, which can smear the electronic transition energies, is suppressed

at temperatures below T = 150K. While ρ1 decays exponentially at high

temperature, it does not at T = 10K, since the dissipative (P , Q) oscillator

mode plays a minor role.

4.4 Effects of the intermediate state energy

Ω2

We now change the intermediate state energy Ω2, which is important to

understand a role of activation energy in the ET process. Since we deal with

a colored noise, the effective coupling strength J ′(ω = Ω)/Ω,[82] where Ω is

a characteristic frequency, changes if Ωj and ∆jk change. To see the pure

effects from the configuration, we compare the results with Ω2 = ±ω0 and

Ω2 = ±10ω0, which are illustrated in Figs. 4.4 and 4.5. While time-evolution
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Figure 4.3: Time-evolution of the density matrix elements for different tem-
perature T =(a) 600K, (b) 300K, (c) 150K, and (d) 10K. We set λ = 4ω0,
so that the other parameters are the same as Fig. 4.1. In each figures, the
red, green, and blue lines show ρ1(t), ρ2(t), and ρ3(t), respectively.
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Figure 4.4: Time-evolution of the density matrix elements for (a) Ω2 = ω0

and (b) Ω2 = −ω0. We set λ = 4ω0/π, γ = 0.1ω0 and T = 300K so that the
case (b) Ω2 = −ω0 agrees with Fig. 4.1 (d). In each figures, the red, green,
and blue lines show ρ1(t), ρ2(t), and ρ3(t), respectively.
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Figure 4.5: Same as Fig. 4.4 besides (a) Ω2 = 10ω0 and (b) Ω2 = −10ω0.

profiles for plus and minus results are similar for large |Ω2|, they are very

different for small |Ω2|. This is due to the energy shifts of the electronic

states arising from the interaction between the system and the canonically

transformed bath. The system-bath interaction −V̂
∑
c′αx

′
α induces energy

fluctuations, which shift the energies of |1〉 and |3〉 states to Ω′1 = Ω1 − λ/4

and Ω′3 = Ω3 − λ/4. Since the effective damping strength is determined by

|Ω2 − Ω′1| and |Ω2 − Ω′3|, the difference of damping for positive and negative

|Ω2| becomes large for small Ω2. Thus, while the results in Fig. 4.4 (a) and

Fig. 4.4 (b) are very different, those in Fig. 4.5 (a) and Fig. 4.5 (b) are

similar.
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4.5 Effects of the nonadiabatic coupling ∆jk

Finally we discuss the effects of the nonadiabatic couplings ∆12 and ∆23,

which control the ET reaction in direct manner. Figures 4.6 (a)-(c) dis-

play the time-evolution of ρj(t) for different nonadiabatic coupling strengths

∆12 and ∆23. For weak nonadiabatic coupling, as shown in Fig. 4.6 (a),

the populations decay slowly. This result is in the nonadiabatic regime and

the ET can be treated as the perturbation of the nonadiabatic coupling.

The lowest order transition from |1〉 to |3〉 is second-order in both ∆12 and

∆23 and proportional to ∆2
12∆2

23 (see Appendix B). When the nonadiabatic

coupling becomes strong, higher-order contributions corresponding to the re-

crossing processes play a role. This is the diabatic transition regime where

the diabatic representation of the potentials is applied to understand system

dynamics (see, for example, Fig.2 in Ref. [20]). The populations exhibit os-

cillating features in the large nonadiabatic coupling case until about t = 50.

In the classical picture, this phenomenon is explained by recrossing of the

wavepacket between the potentials that failed to get trapped by dissipation

process, but in the quantum picture, it is an interference phenomenon ex-

plained by the transition between the energy eigenstates.[20]
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Figure 4.6: Time-evolution of the density matrix elements for different nona-
diabatic couplings ∆12 = ∆23 = (a) 0.05ω0, (b) 0.1ω0, and (c) 0.5ω0. We set
λ = 4ω0/π, γ = 0.1ω0 and T = 300K. The case (b) ∆12 = ∆23 = 0.1ω0 agree
with Fig. 4.1 (d). In each figures, the red, green, and blue lines show ρ1(t),
ρ2(t), and ρ3(t), respectively.
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Chapter 5

Electron Transfer Reaction
Rate

As shown in IV, ρj(t) decays more or less exponentially apart from the ini-

tial temporal oscillatory motions. Since the chemical reaction rate can be

defined by the flux-flux correlation function, which is the correlation func-

tion between the population of reactant and product states, the present ET

reaction process may also be characterized by ρj(t). Because the difference

from the equilibrium population δρ(t) = ρ(t) − ρeq is expected to approach

zero with time as δρ(t) = δρ(0) · e−kt, the ET rate can be defined in a time-

dependent form[83]

k(t) = − δ̇ρ(t)

δρ(t)
. (5.1)

In order to obtain the rate in the three-state ET reaction, we computa-

tionally perform linear response experiments.[72, 82] First, we set the energy

of the |3〉 state to Ω3 + ε, where ε is small (0.01ω0) and the populations of

electronic states to their thermodynamic averages. After a sufficient time,

for which the system reaches equilibrium, we set the present time as t = 0
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and remove the perturbation ε. The populations at t = 0, equilibrated with

the perturbation, are no longer in equilibrium and re-equilibrate to the un-

perturbed state. Then, we adapt the definition of the time-dependent ET

rate, Eq. (5.1), for the three-state system as k(t) = − ˙δρ3(t)/δρ3(t). Since

δρ3(t) and ˙δρ3(t) are expected to be proportional to the perturbation ε if ε

is small, k(t) does not depend on ε.

To illustrate the feature of ET rates, we plot the ET reaction rate as a

function of time for different γ in Fig. 5.1. The other parameters are the

same as the case in Fig. 4.2. For weak γ, ET rates show an oscillation feature,

because of the interference of transition between the discrete energy states

at different potentials.[82] In a classical picture, the oscillation feature is

interpreted as the recrossing of the population between the potentials caused

by the electron that is not trapped. [20] After the temporal motions ends

owing to the dissipation arising from the bath, the ET rate reaches plateau

values. These plateau values, hereafter denoted by krxn, correspond to the

relaxation rates. In the following, we ploted krxn as the function of T , Ω2,

and Ω1 to characterize the ET processes.

5.1 ET rate as the function of the inverse

temperature

Figure 5.2 displays krxn as the function of the inverse temperature β~ω0.

To analyze the temperature dependence of krxn, it is helpful to adopt the

diabatic picture of the ET processes. The activation energies in this picture

are estimated from the difference between the potential minima and the
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and ω0 (blue line). The other parameters are the same as Fig. 4.2
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Figure 5.2: The relaxation rate as a function of the inverse temperature.
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crossing points of the potentials. The activation energies between |1〉 and |2〉

and |2〉 and |3〉 are then evaluated as E 6=12 = 0.104~ω0 and E 6=23 = 0.785~ω0,

respectively. Since we defined the ET rate by Eq. (5.1), the reactant state

involves both the |1〉 and |2〉 states. When the temperature is high (β~ω0 <

1), both |1〉 and |2〉 states are populated and both |1〉 → |2〉 → |3〉 and

|2〉 → |3〉 transitions contribute to the ET rate. Since the |1〉 to |3〉 transition

is harder than |2〉 to |3〉 and population in the |1〉 state cannot be negligible

for β~ω0 < 1, the gradient of the ET rate as a function of β~ω0 becomes

gentle in β~ω0 < 1, The ET rates follows the Arrhenius law of the |2〉 → |3〉

transition with the activation energy E 6=23 = 0.785~ω0.

The ET process is an intrinsically quantum process and the reaction rate

reflects not only energy gaps but also the overlap of wave functions. For low

temperature β~ω0 > 3.60, the wavepackets are localized at the ground state

of |2〉. Since the profile of a wavepacket does not change much below this

temperature, the ET rate, which can also be calculated from the overlap of

integrals of |2〉 and |3〉 wavepackets, become constants.

5.2 ET rate as the function of Ω2 and Ω1

Figures 5.3 and 5.4 illustrate the ET reaction rates as a function of Ω2 and

Ω1 evaluated from the linear response simulation. The other parameters are

the same as those in Fig. 4.1. In contrast to the results from the two-

state system whose ET rate profile is characterized by so called ”inverted

parabola” (see also Appendix C),[63, 84, 1, 51, 52, 53, 4] the ET rates in the

three-state case exhibits an asymmetric bell shape as shown in Fig. 5.3. The
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top of the parabola is not formed at Ω2 = 0 but at Ω2 = −λ/4, since the

(P , Q) oscillator plus bath system shifts the energies of both the |1〉 and |3〉

states. For Ω2 � ω0, ln krxn does not decrease so much, since the quantal

super-exchange transition mechanism plays a major role in this parameter

regime.[32, 33] This process arises from the coherent transition between |1〉

and |3〉, which utilizes the coherences between |1〉 and |2〉 and |2〉 and |3〉, and

is similar to the second-order Raman process in the optical problem.[85, 86]

Since the |2〉 state acts as the virtual state, the Ω2 dependence of the super-

exchange transition is weaker than that of the thermally activated transition

from |1〉 → |2〉 → |3〉. This transition is called a sequential transition and

is analogous to the luminescence in optics. While the transition for −ω0 <

Ω2 < 0.5ω0 is explained by the sequential transition which exhibits a normal

inverted parabolic profile as a function of Ω2, ln(krxn/ω0) becomes larger

than expected for Ω2 < −ω0. As explained before, both |1〉 and |2〉 states

act as the reactant state by the definition k(t) in Eq. (5.1). For small Ω2,

the majority of the population is in the |2〉 state and the major contribution

to the ET rate becomes the |2〉 → |3〉 transition, while the contribution from

|1〉 → |2〉 → |3〉 transition becomes small due to the small |1〉 population.

Since the transition rate of |2〉 → |3〉 is larger than that of |1〉 → |2〉 → |3〉

, the ET rate becomes larger than expected from the parabolic profile as

indicated in Fig. 5.3.

Figure 5.4 displays the ET reaction rate as the function of Ω1 for fixed

Ω2 = −ω0 and Ω3 = 0. For large Ω1, the majority of the population is in the

|2〉 state and since only the |2〉 → |3〉 transition contributes to the ET rate,
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the reaction rate becomes constant. For small Ω1, most population is in the

|1〉 state. In this case the transition between |2〉 and |3〉 plays a minor role

and the ET rate is mostly determined from the |1〉 → |2〉 transition. Then

the profile of the ET rate exhibits an inverted parabolic shape for small Ω1

with the activation energy determined from the |1〉 and |2〉 states.

46



Chapter 6

Concluding Remarks

A kinetic equation of motion approach for reduced density matrix elements

has an advantage to study dynamics in a large time scale, since such approach

does not require the sampling which rapidly increases with an evolution time

period and the degrees of freedom. While the majority of the reduced equa-

tion of motion approaches have to employ some approximations such as the

rotating wave approximation, the white noise (or Van Hove) approximation,

the factorized assumption for the system and the bath, all of which strongly

restricts the applicability of the equations of motion. Such restrictions can be

removed by introducing the hierarchy of reduced density matrices which con-

tain the information of the higher-order system bath interactions.[66] Since

many interesting problems including the ET processes are in the restricted

parameter regimes of conventional reduced equations of motion approaches,

the hierarchy equations of motion approach is variable especially to explore

a nonlinear response, where the system-bath coherence neglected under fac-

torization assumption plays a major role.

In this paper, we study the ET process by employing the hierarchy
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equations of motion for the Brownian spectral distribution with the low-

temperature correction terms.[19, 77] Taking an advantage of nonperturba-

tive theory, we studied ET dynamics and ET reaction rates for the first time

over a wide range of parameters including the system-bath coupling, nonadi-

abatic coupling and temperatures for various oscillators configurations. The

time evolution of the reduced density matrix elements illustrates the interplay

of coherences between the electronic and vibrational states. The ET reaction

rates as a function of the intermediate state energy exhibits an asymmetric

inverted parabolic profile in a small activation regime due to the presence of

the intermediate state between the reactant and product states and a slowly

decaying profile in a large activation energy regime, which arises from the

quantum coherent transitions.

If necessary, further extension to a nonadiabatic transition problem with

anharmonic potential surfaces[20, 21] with taking into account nonlinear

oscillator-bath coupling[87, 88] is possible from the hierarchy equations of

motion approach by explicitly dealing with the oscillator coordinate. Since

we are dealing with equations of motion with the system-bath coherence,

we can easily include the external time-dependent driving force to the sys-

tem dynamics. Thus, nonlinear spectroscopy, such as multi-dimensional

spectroscopy[89], is easily studied from the hierarchy equations of motion

approach. Numerical rigorous solutions from this approach can provide in-

formation that can be compared with experimental results and approximate

theory.
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Appendix A

Derivation of the Brownian
Spectral Density

As shown in Ref. [90], the reduced dynamics of just the electron and the

single harmonic mode are influenced by the bath only through the following

spectral density:

J0(ω) =
∑
α

c2
α

2mαωα
δ(ω − ωα). (A.1)

The spectral density can be determined provided one knows the semiclassical

equation of motion satisfied by the single harmonic mode. In particular, if,

for fixed V̂ , the single harmonic mode experiences a frictional force linearly

proportional to its velocity with a coefficient Mγ, that is if the equation of

motion is

M
d2Q

dt2
+Mγ

dQ

dt
−Mω2

0DV̂ = Fext, (A.2)

where Fext is any external force, then we can show that J0(ω) is given by

J0(ω) = Mγω exp

[
− ω
ωc

]
. (A.3)
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Here, ωc is a high frequency cutoff that is required on both physical and

mathematical grounds, and that is much larger than the domain of frequen-

cies over which Eq. (A.2) is a reasonable approximation to the exact equation

of motion. (We taking the limit ωc →∞ later, so that (A.1) becomes Mγω

in 2.)

To determine the effective spectral density

Jeff (ω) =
∑
α

c
′2
α

2m′αω
′
α

δ(ω − ω′α), (A.4)

we do not have to find {c′α}, {m′α}, etc. The transformation from Eq. (2.1)

to Eq. (2.3) does not involve the electronic system, so that the same spectral

density will control the dynamics of a continuous variable q moving in some

potential U(q) and coupled to coordinates Q and {xα} in the same way as

the electronic system. As shown by Leggett[91], it is enough to know the

equation of motion for q in the classical limit in order to deduce Jeff (ω), and

this allows us to overcome the calculation of the normal modes.

For the purpose of finding Jeff (ω), we consider the Hamiltonian

H =
p2

2µ
+ U(q) +

P 2

2M
+

1

2
Mω2

0(Q−Dq)2

+
∑
α

{
x2
α

2mα

+
1

2
mαω

2
α

(
xα −

cα
mαω2

α

Q

)2
}
, (A.5)

where p is the momentum conjugate to q. The classical equations of motion

are

µq̈ = −dU(q)

dq
+Mω2

0D(Q−Dq), (A.6)

MQ̈ = −Mω2
0(Q−Dq) +

∑
α

cαxα −
∑
α

c2
α

mαω2
α

Q, (A.7)
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and

mαẍ
2
α = −mαω

2
αxα + cαQ. (A.8)

We define the Fourier transform

q̃(z) =

∫ ∞
−∞

q(t)e−iztdt, Im(z) < 0, (A.9)

and write the equation satisfied by q as

K̃(z)q̃(z) = −Ũ ′(q), (A.10)

where K̃(z) is a function of z alone, and Ũ ′(q) is the Fourier transform of

dU(q)/dq. Then, J(ω) is given by

Jeff (ω) = lim
ε→0+

Im
[
K̃(ω − iε)

]
; ω real. (A.11)

Using the definitions (A.1) and (A.3), we obtain

K̃(z) = −µz2 +Mω2
0D

2 L̃(z)

L̃(z) +Mω2
0

, (A.12)

with

L̃(z) = −z2

[
M + 2

∫ ∞
0

dω′
Mγe−ω/ωc

ω′2 − z2

]
. (A.13)

Here, we used the equation

∑
α

c2
α

mαω2
α(ω2

α − z2)
= 2

∫ ∞
0

dω′
Mγe−ω

′/ωc

ω′2 − z2
. (A.14)

After integrating the second term of the right side in (A.13), we take the

cutoff ωc to infinity, which then leads to the expression

L̃(z) = −z2M + iMγzπ. (A.15)
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Substituting this in Eq. (A.12), and using Eq. (A.11), we get

Jeff (ω) =
MD2

π

γωω4
0

(ω2
0 − ω2)2 + ω2γ2

. (A.16)

We introduce a parameter

λ ≡ Mω2
0D

2

2~
, (A.17)

then we get the Brownian spectral density (2.5).
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Appendix B

Three-state Rabi Oscillation

To illustrate the characteristic motion arising from the three-state system,

we analytically solve equation of motion for ĤA defined by Eq. (2.2). We

consider the probability that the system is initially ( at t = 0 ) in the state

|1〉 and found in the state |j〉 at time t,

Pj1(t) ≡ |〈j|U(t, 0)|1〉|2, (B.1)

where U(t, 0) is the time evolution operator. To simplify the results, we

assume Ω1 = Ω3 = 0, ∆12 = ∆21, and ∆23 = ∆32. Then the eigenvalues of

ĤA is given by ε = 0 and ε± ≡ ~(Ω2 ± ΩR)/2, where

ΩR =
√

Ω2
2 + 4(∆2

12 + ∆2
23) (B.2)

and the corresponding eigenstates are

|χ0〉 =
1√

∆2
12 + ∆2

23

(∆23|1〉 −∆12|3〉), (B.3)

and

|χ±〉 = c±

(
∆12|1〉+

ε±
~
|2〉+ ∆23|3〉

)
, (B.4)
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Figure B.1: Schematic view of the nondiagonal energies (left) and eigenener-
gies (right) of a three-state system. Beside the arrows are the characteristic
frequencies of the system Ω2 (left), ε±/~, and ΩR (right).

where c± = (∆2
12 + ∆2

23 + ε2±/~)−1/2 (see Fig. B.1.) The time evolution

operator is thus expressed as

U(t, 0) = |χ0〉〈χ0|+ |χ+〉e−
i
~ ε+t〈χ+|

+|χ−〉e−
i
~ ε−t〈χ−|, (B.5)

in the |1〉, |2〉, and |3〉 basis sets. The probability of the system to be found

in the state |2〉 and |3〉 at t aregiven, respectively, by

P21(t) =
2∆2

12

Ω2
R

sin2

(
ΩR

2
t

)
, (B.6)

and

P31(t) =
4∆2

12∆2
23

∆2
12 + ∆2

23

{
c2

+ sin2
( ε+

2~
t
)

+ c2
− sin2

( ε−
2~
t
)

− 1

Ω2
R

sin2

(
ΩR

2
t

)}
. (B.7)

Thus the oscillation of ρ2(t) in the chapter 4 depends on ΩR, while those of

ρ1(t) and ρ3(t) are determined by ΩR, ε+/~, and ε−/~.
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Appendix C

Electron Transfer Rate in a
Two-state Case

We can adapt the hierarchy equations of motion Eqs. (3.18) and (3.25) to

the two-state case (|1〉 and |2〉) by simply truncating the sum of j up to 2

in Eqs. (2.2) and (2.4), respectively. We set Ω2 = 0 and ∆12 = ∆21 = 0.1ω0

and employ the same bath parameters as in the section 5.2. The ET rate

k(t) is defined in terms of δρ2(t) and the perturbation ε is put on Ω2 to

carry out the linear response simulation. Figure C.1 shows the ET reaction

rate as a function of activation energy. In this low friction regime, the ET

reaction rate increases as energy mismatching is small.[92] The profile for the

two-state system is parabolic as predicted by Marcus. In Fig. C.1, resultant

values of ln(krxn) are fitted to the parabola, −0.168(x+3.51×10−11)2−3.12.
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Figure C.1: The ET rate as a function of Ω1. Resultant values of ln(krxn/ω0)
(green points) are fitted to the parabola. We set Ω2 = 0, and ∆12 = ∆21 =
0.1ω0, and λ = 4ω0/π. The other bath parameters are the same as in Fig.
4.2 (b)
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Appendix D

Time-dependent Electron
Transfer Rate

We illustrate ET rate as a function of time for different λ in Fig. D.1, T in Fig.

D.2, and Ω2 in Fig. D.3. ET rates show an oscillation feature corresponding

to the fine oscillation shown in Figs. 4.2, 4.3, and 4.4, which reflects the

population transition between the discrete energy states. In Fig. D.1, the

oscillation frequency is: 0.724ω0 for λ = 4ω0/π; 0.388ω0 for λ = 8ω0/π.

In Fig. D.2, the oscillation of k(t) has the same frequency 0.724ω0 for all

T values. The above frequencies correspond to the fine oscillation of the

population in the chapter 3.
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Figure D.1: ET reaction rates for λ = 4ω0/π (red line) and 8ω0/π (green
line). The other parameters are the same as Fig. 4.1.
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Figure D.2: ET reaction rates for T = 600K (red line), 300K (green line),
and 150K. The other parameters are the same as Fig. 4.3.
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