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Chapter 1 
General Introduction 
 

1.1 Definition of Free Energy Landscape 
Ensembles of atomic or molecular systems with competing interactions exhibit 

intriguing behaviors.  In a glass and an amorphous solid, the long time relaxation 

processes play a major role as temperature lowered, leading to a slowing down and a 

broadening in the dynamical response.[1] The incomplete crystallization of polymers 

due to their topological connectivity and initial configuration makes the polymer 

chains fold back and forth to form crystalline lamellae.[2]  Despite of complex 

energetics between a reactant and a product along with their surrounding solvent, 

electron transfer (ET) processes can be well characterized by the inverted parabolic 

dependence of ET rates as the function of energy gap.[3][4]  Protein molecules fold 

into precise three-dimensional shapes under the entropic frustration associated with the 

chain connectivity.[5]  Much of this complexity can be described and understood by 

taking a statistical approach to the energetics of molecular conformation, that is, to the 

free energy landscape (FEL). While the potential energy surface only deals with 

energetics, the FEL can deal with both the energetics and entropy.[6][7][8] 
The FEL concept was introduced by Landau to explain a phase transition between 

liquid and crystal or between different crystal structures.[ 9 ] The FEL is a 

conformational substate of the free energy.  For a macroscopic variable X, it is 

defined by 

 ( ) ln ( )BF X k T Z X= − , (1.1.1) 

where 

 ( )
 for fixes 

exp /j B
j X

Z X E k T⎡ ⎤= −⎣ ⎦∑  (1.1.2) 

is the partition function for fixed X.  The Helmholtz free energy is then expressed as 

 ln ( )BF k T dXZ X⎡ ⎤= − ⎣ ⎦∫ . (1.1.3) 
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The function ( )F X  is regarded as the constrained free energy with X .  In the 

Landau case, X  is the order parameter that represents the difference between the 

phases such as liquid and crystal. Although X is functionally important and is decidedly 

present, X  is not necessary to be an externally controllable physical variable. In that 

sense, there are various ways of choosing X. The free energy and FEL are defined 

under the thermal equilibrium and ( )( )exp / BF X k T− corresponds to a probability 

which the macroscopic quantity of the system takes X . The definition of the FEL 

contains the thermal fluctuation, thus the FEL plays an important role in critical 

phenomena. Various mathematical techniques were developed to treat regular magnetic 

systems and spin glass systems.[10]. The basic assumption of this argument is that the 

system prefers to take the energy minimal of ( )F X  from other metastable states. A 

state in different phases is explained by a local minimal point of F(X), such as 

( 1)F X =  for liquid phase and ( 0)F X =  for solid phase. In this sense, an analysis of 

( )F X  in phase transition explores the basins on the FEL rather than the entire 

structure of the FEL. 

 

 

1.2 Dynamics on Free Energy Landscape 
When system dynamics on free energy landscape (FEL) is discussed in terms of 

the entire structure of the FEL, a time-dependent Ginzburg-Landau (TDGL) approach 

is employed, where a driving force of X is assumed to be proportional to dF(X)/dX. 

This formalism was introduced to investigate dynamical phenomena of 

superconductors [ 11 ], and used to explain a motion of domain walls or 

interfaces.[12][13] 

As the TDGL approach has been used successfully used to study critical 

phenomena, the FEL becomes important theoretical tools to analyze electron transfer 

(ET) reaction problems. In such problems, the FELs of the reactant and product states 

are expressed in terms of a reaction coordinate consisting of reactant and product along 

with their surrounding of solvent. Marcus evaluated the free energy of a given 



 

 7 

polarization and predicted the inverted parabolic or bell-shaped dependence of ET rates 

as the function of energy gap [3] , which was later observed 

experimentally.[14][15][16] A reaction coordinate could be adequately defined by the 

microscopic interaction energy [17][18][19][20] and a number of computer simulations 

were carried out to confirm the legitimacy of Marcus’s theory.[21][22][23][24] At the 

present time, the FEL for ET processes is fairly understood at least for 

high-temperature cases and the interest of FEL analysis is shifting to a low temperature 

case, where the solvent motion freezes.[25] [26]   

While the FEL of ET system was characterized by a simple parabolic shape, 

systems with involving complex interaction networks exhibit complex FELs depending 

on a choice of X. The examples are found in such systems as spinglass [10], glass 

[27][28], atomic cluster [29], polymers [30][31], and proteins [32][33][34][35][36][37], 

and indicate that a full understanding of the dynamical process requires a global 

overview of the FELs. Many basins corresponding to metastable states are exhibited in 

the systems and the dynamics among the basins is believed to govern the dynamical 

properties of the materials. Special attentions have been paid for protein folding 

problems, where the energy landscapes of protein have a single dominant basin and an 

overall funnel topography.[38][39] 

Although the FEL analysis is proven to be a useful theoretical framework and is 

widely used to discuss the structure and dynamics of complex system, there are 

difficulties to investigate the dynamics at low temperature. The difficulties arise from 

the calculations for the FEL analysis; even in a small system, an enormous number of 

states need to be generated. For instance, for fifty two-level spins system, more than 
1510  states must be generated for the calculation which cannot be handled by present 

computers. Several sampling methods were developed to simulate FEL for a large 

system [40][41], however the sampling procedures may truncate the dynamical 

pathways of the system and may differ the dynamical aspects especially at low 

temperature. The nature of FEL itself raises a fundamental question; the systems with 

different dynamics can have the same FEL. For example, a system described by either 
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the Langevin dynamics [42] or Monte Carlo (Glauber dynamics) [43] can have the 

same FEL if the system part of the Hamiltonian is the same. Since the FEL is defined 

by the equilibrium state where dynamical behaviors become invisible, it is possible to 

consider the FEL and the dynamics are independent issues of discussions. From the 

experimental side, it is difficult to justify the validity of the FEL theory, since the FEL 

itself is not observable and, in addition, X  is usually not experimentally controllable 

variable. A number of issues related with dynamical properties on FEL have been 

postulated. Our aim of this research is to clarify some of the problems mentioned 

above. 

 

 

1.3 Modeling of System and Calculation of FEL 
First of all, the property of the FEL needs to be investigated in a wide temperature 

range. One possible approach is to perform a full molecular dynamics (MD) simulation 

and to sample relevant states for a given temperature. However this approach is 

inappropriate for obtaining the FEL at low temperature, since the molecules consisting 

of the system have many degrees of freedom and the state of the system is trapped in 

the local energy minima. Thus we employ a simple model approach to reduce the 

degrees of freedom. For the protein folding problem, a freely jointed monomer chain 

model with simplified interactions is an example of the coarse graining for complex 

systems.[38][44][45][46][47] Several studies based on such model approach have been 

conducted to study static and dynamic aspects on solvation at high temperature. For 

example, the Brownian dipolar lattice model, which consists of point dipoles fixed on a 

simple cubic lattice [48][49], and the self-consistent continuum model in a spherical 

Onsager cavity[50], were used to investigate dielectric relaxation. Papazyan and 

Maroncelli introduced an ion in a Brownian dipole lattice to study ionic solvation.[51] 

Several theories for solvation dynamics [52][53] were developed and compared with 

computer simulations.[54][55][56] These models were sufficiently simple to apply for 

dynamical simulations, however, they still contain too many degrees of freedom to 
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calculate the FELs especially at low temperature. Therefore we take a minimalist 

model approach for investigating the FEL, which was originally introduced by 

Onuchic and Wolynes to study glassy behavior of solvent molecules in electron and 

charge transfer reactions.[57] In this approach, ionic solvation on a polar solvent is 

modeled by a central charge surrounded by dipolar molecules with rotational dynamics 

represented by dipoles pointing only in two directions, the inward and outward 

directions relative to the ion as shown in Fig. 1.1. The simplicity of this model allows 

us to thoroughly explore how the energetics of solvation depend on solute charge, 

solvent dipole, and number of solvent molecules with an aid of random energy model 

(REM) theory, where the interaction energies among solvent molecules were assume to 

have a Gaussian distribution independent of the microscopic details of the molecular 

interactions.[58][59] Note that the approach based on the REM approximation was 

used for the protein folding problem by Bryngelson and Wolynes.[60] The minimalist 

model was also applied to investigate the dynamical phase transition [61][62] using 

Monte Carlo kinetics in addition to thermodynamic phase transition by utilizing the 

(mean) first passage time idea [63]. The extension of the minimalist model to 

multilayer solvent molecules with all dipole-dipole and charge-dipole interactions were 

applied to investigate the multiple glassy transitions associated with the freezing of the 

different solvent layers.[64] 
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Figure 1.1: Minimalist model originally introduced by Onuchic and Wolynes. The 
ionic solvation on a polar solvent is modeled by a central charge surrounded by dipolar 
molecules with simple rotational dynamics represented by dipoles pointing only in two 
directions, the inward and outward directions relative to the ion. The translational   
motion of the surrounding dipoles is omitted and the dipoles are located on a single 
shell with random displacements. 
 

For large systems, it is not appropriate to generate all states to calculate the FEL, 

because the huge number of states exists. Thus the sampling method is suitable, 

however it is expected that the state trapping in local minima occurs at low temperature 

using the Monte Carlo method with Metropolis algorithm [65] even if the degrees of 

freedom decrease. To overcome the difficulty, the generalized-ensemble algorithms 

[66] have been developed. The algorithms enable us to sample relevant states even in 

the low temperature case by using non-Bortzmann sampling weigh factors. One of the 

most well-known generalized-ensemble algorithms might be the multicanonical 

algorithm proposed by Berg and Neuhaus.[67][68] The entropic sampling [69][70], 

Wang-Landau sampling [71][72] and adaptive umbrella sampling [73] of the potential 

energy [74] also refer to the multicanonical algorithm. The generalized-ensemble 

algorithm has been applied to many problems such as spin glass, proteins and 

polymers.[75][76][77][78] Okumura and Okamoto suggested the multidimensional 
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extensions of the multicanonical algorithm.[79][80] In Chapter 2, we explain the detail 

of the Wang-Landau algorithm. 

 

 

1.4 Multidimensional Spectroscopy 
For investigating the state dynamics on the FEL, we monitor the dynamics not 

only by linear absorption spectroscopy but also by multidimensional spectroscopy.[81] 

Since the multidimensional spectroscopy is proven to be a powerful tool for surveying 

molecular nature [ 82 ], several theoretical [ 83 ][ 84 ][ 85 ][ 86 ], experimental 

[87][88][89][90] and computational [91][92][93][94][95] efforts have been made to 

understand the manifold information for molecular motions and interactions. The 

multidimensional spectroscopy is the optical counterpart of multidimensional 

NMR[96] that can sensitively prove dynamical aspects of molecules in condensed 

phases. An observable in multidimensional vibrational spectroscopy is multibody 

correlation function of polarizability or dipole moment. The n-body correlation 

function is given as 

 ( ) ( ) ( ) ( ) ( )1 2 1 1 2 1, , , , ,n
n n n nC t t t V t V t V t V− − − −

⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦" " "  (1.4.1) 

where ( )tV  is the Heisenberg operator of V  and "  represents the ensemble 

average. The operator V is the polarizability and the dipole moment for Raman and 

infrared (IR) spectroscopy, respectively. The three-body and four-body correlation 

functions are observed in the cases of fifth-order Raman and second-order IR and in 

those of seventh-order Raman and third-order IR, respectively. When a particle is 

driven by the harmonic potential and interacts with the external filed linearly, the three- 

and four-body correlation functions vanish because of the Gaussian integrals involved 

in the thermal average or cancellation of the coherence involved in the different 

Liouville paths. The multidimensional spectroscopy is sensitive to the anharmonisity 

and nonlinearity of system and is one of the available tools for investigating the 

microscopic details of the system such as mode-mode coupling [97][98][99][100] and 

dephasing mechanisms.[ 101 ][ 102 ][ 103 ][ 104 ][ 105 ] Note that the sensitivity is 
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applicable not only to the kinetic systems following the quantum or classical dynamics, 

but also to the non-kinetic systems following the master equation or Smoluchowski 

equation.[106] The sensitivity of the multidimensional spectroscopy is fully taken into 

account when the dynamics is explored on different FELs. 

 

 

1.5 Organization of This Thesis 
In this thesis we introduce three types of models to investigate the properties of 

the FEL. In Chapter 2 we analyze a model for representing the ionic solvation which is 

the association of dipolar or ionic solvent molecules with a solute ion.[3] The model 

consists of a central charge surrounded by dipolar molecules posted on 

two-dimensional distorted lattice with simple rotational dynamics. Our interest is the 

structure of the FEL especially in the low temperature case. After obtaining the FEL for 

the ionic solvation system, we compare the results with the FEL given by employing a 

random energy model (REM) approximation.[58][59] We discuss how the structure of 

the FEL changes depending on the central charge in a wide temperature range. 

In Chapter 3 we consider the FEL for the electron transfer system and introduce a 

model consists of a solute dipole surrounded by dipolar molecules with simple 

rotational dynamics located on the three-dimensional distorted lattice sites. The 

interaction energy between the solute and solvent dipoles as a reaction coordinate is 

adopted and the FELs are calculated by generating all possible states for a 

26-dipolar-system and by employing the Wang-Landau sampling algorithm for a 

92-dipolar-system. For the high temperature case the structure of the FEL is quadratic 

form, while for the low temperature case a notched structure appears on the FEL 

because of the complex interactions among solvent dipoles. The formation of the 

notched structure is analyzed with a statistical approach. The analysis indicates that the 

amplitude of the notched structure depend upon the segment size of the reaction 

coordinate and characterized by the interaction energy among dipoles. Using the 

simulated FEL, we calculate the reaction rates as a function of the energy gap for 
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various temperatures. 

In Chapter 4 a general purpose model for investigating the relationship between 

the FEL structure and relaxation dynamics is introduced. A dipolar crystal system is 

modeled by dipolar molecules posted on two-dimensional lattice sites with two-state 

librational dynamics. All dipole-dipole interactions are included to have frustrated 

interactions among the dipoles. To relate the FEL to the direct observable quantity, the 

reaction coordinate is chosen to be the polarization. For investigating dynamical 

aspects of the system, single flip and single-double mixed flips dynamics of dipoles are 

incorporated into the model with an aid of a master equation. The first- and third-order 

response functions of polarization, which are the observables of linear and 

two-dimensional (2D) IR or far IR spectroscopies, are calculated for different 

conditions characterized by the FEL. Since the profile of 2D IR spectroscopy is 

expected to detect the dynamics hidden in FEL, thus we are able to demonstrate the 

different dynamics following the Smoluchowski equation. The validity of the 

Smoluchowski equation approach to study the dynamics of system on the calculated 

FEL is also examined by calculating 1D and 2D signals to compare with the dynamics 

following the master equation. 

In Chapter 5, we summarize this thesis and our conclusion is stated. 
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Chapter 2 
Free Energy Landscape Analysis for Ionic 
Solvation System 
 

2.1 Introduction 
Ionic solvation is the process of attraction and association of solvent molecules 

with solute ions. Solvation plays an important role in many chemical processes in 

condensed phases such as electron and charge transfer reactions.[3][4] Complex 

dipolar interactions among solvent molecules cause the energy fluctuation which is 

necessary for thermally activated processes. To explore a role of solvation, one 

possible theoretical approach is to perform full molecular dynamics (MD) simulations 

by placing the charge in a collection of explicit solvent molecules. To have a fairly 

complete view of the solvent effect, one has to make an ensemble average over all 

possible trajectories of molecular motions. This approach is possible for high 

temperature case [ 107 ]; however, it is extremely difficult to apply for a low 

temperature case since the solvent molecules have too many degrees of freedom and 

there are too many local minima in the free energy landscape (FEL) at low 

temperatures. Despite of the complexity of the system, there is a still possibility to 

explain a role of solvent using a single macroscopic variable. For example, Marcus 

introduced a FEL as a function of a macroscopic variable representing the collective 

nature of the solvent molecules.[3] The solvent is treated as homogeneous dielectric 

continuum and the FEL is expressed as a quadratic function of the solvent polarization, 

which is adopted as the reaction coordinate for representing rearrangements of the 

solvent environment. Electron transfer (ET) rates are then evaluated in terms of the 

FELs for solvated reactants and products. The advantage of analyzing the system by 

means of the FEL is on the inclusion of entropic contributions upon the possible paths 

of chemical processes. For example, in electron transfer (ET) and charge transfer (CT) 

problems, a reaction rate may be calculated by averaging over all possible reaction 

paths with relevant statistical weight [19] [20] [21][22][23][24], since there are infinite 
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numbers of reaction paths due to so many degrees of freedom arise from the solvent 

states. This procedure is almost impossible to carry out except for the high temperature 

case. The success of Marcus theory indicates that introducing a FEL is indeed an 

effective way to describe the reaction processes at least above the freezing temperature. 

Since the macroscopic variable may not be sensitive to the microscopic details of the 

interactions, we may employ a simple model to gain insight into a role of ionic 

solvation. For example, if we separate the rotational and translational degrees of 

freedom of solvent molecules, we can simplify the statistical analysis and facilitate 

construction of reliable energy landscapes at low temperatures. As mentioned in the 

Chapter 1, there are several studies based on such model approach suitable for studying 

dynamical aspects of solvation at high temperature, however they still contain too 

many degrees of freedom to calculate FELs. For this purpose, we take a minimalist 

model approach [57] and calculated the FELs as a function of the polarization. 

The organization of this chapter is as follows. In section 2.2, a model composed of 

a single charge and dipolar solvent is described. The FEL is introduced as a function of 

a collective solvent variable. In section 2.3, the Wang-Landau algorithm is introduced 

to calculate the density of states as a function of energy and polarization. The 

numerical results are presented in section 2.4, and the final section is devoted to the 

conclusion. 

 

 

2.2 Simulation Model for Ionic Solvation 
The original minimalist model consists of a charged cavity and a single shell of 

solvent molecules represented by dipoles with simple rotational dynamics. These 

dipoles were allowed to point only two directions, inward to and outward from the 

charged cavity. Tanimura et al. extended the single shell of solvent molecules to two 

layers.[64]  Monte Carlo simulations were carried out on this system including all 

dipole-dipole and charge-dipole interactions. We post the dipoles on a two-dimensional 

square lattice having lattice constant L  and containing structural disorders (Fig. 2.1).  
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The position of the j th dipole jr  can be expressed using a lattice point vector 

ja  and displacement vector from the lattice point jaδ , i.e., jjj aar δ+= . The 

strength and the unit vector specifying the direction of a dipole are μ  and 

jS respectively,  where ||/ jjj rrS = . If we introduce the sign operator 1±=jσ , 

where the sign depends on whether the dipoles are pointing toward or away from the 

charge, the dipole movement is expressed as jjSμσ− . Thus, the charge-dipole and 

dipole-dipole interactions are explicitly given by 

 { }( )
1

1 2 1
( )

jN N

tot i i i jk j k
i j k

E q Jσ ξ σ σ σ
−

= = =

= − +∑ ∑∑ , (2.2.1) 

where we set 

 2( )i
i

qq
r
μξ = − , (2.2.2) 

and 

 
( )( )2

2
5

3j k jk j jk k jk
jk

jk

J μ
⋅ − ⋅ ⋅

=
S S r S r S r

r
 (2.2.3) 

with kjjk rrr −= . The system exhibits a glassy behavior at various low temperatures 

because of these complex interactions with structural disorder. For the units of 

parameters, we employ values typical of ET or CT systems in polar solvents. Thus, q , 

μ  and L  are chosen to be 0.1 of the electron charge, the unit of Debye, and the unit 

of 2.1
D
A , respectively. Adopting such typical units, the energy unit becomes 

201008.1 −×  J, which is about 2.5( TkB ) at room temperature. Then, simulations are 

carried out for 85.1=μ  and 1=L  for different q  and temperatures. The 

displacements from the lattice points obey a Gaussian distribution with average 

0=jaδ and standard deviation 1.02 =jaδ . As a collective solvent coordinate, 

we introduce the total polarization defined by 

 p n n− += −  (2.2.4) 

where +n  and −n  represent the number of dipoles directed inward to and outward 

from the charged cavity, respectively, and the total number of dipoles are given by 

 N n n− += + . (2.2.5) 
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We further introduce the average polarization per dipole defined by Npx /= . The 

FEL is then expressed in terms of x  and T  as 

 { }( )( )
{ }

( , ) ln exp /
i

B
tot i B

x

k TF x T E k T
N N σ

σ
∈

= − −∑ , (2.2.6) 

where the summation is taken over all configurations for which { }( )ixx σ= . Even in 

the present model which consists of a charged cavity and 80 dipoles on a 99×   

two-dimensional square lattice, there are too many states to enumerate all 

configurations in this summation. The procedures for efficiently sampling relevant 

states are essential in order to construct the FELs. Our approach is described in the 

following section. 

 

 q

 L  

Figure 2.1: Schematic view of the solute and solvent model system. A solute molecule 

is represented by a point charge on the center of two-dimensional square lattice. 

Solvent molecules are expressed by dipoles located on disordered lattice sites 

surrounding the central charge. Each dipole is allowed to direct only two directions, 

toward and opposite to the central charge.  

 

 

 

 

 



 

 19 

2.3 Wang-Landau Algorithm 
The difficulty in evaluating Eq. (2.2.6) arises from the astronomically large 

number of states involved in the summation. Fortunately, such large number of states 

allows us to employ a statistical treatment. If we obtain a subset of the ensembles that 

are the representative of all of the states in the summation in Eq. (2.2.6), we may 

evaluate ),( TxF  from the subset. The Monte Carlo method with Metropolis 

algorithm[65] has been used to generate such representative ensembles, but this 

approach is time consuming for a glassy system at low temperature, because the 

trajectory of sampled states generated by the Monte Carlo method is easily trapped in 

the local energy minima.  To overcome this difficulty, Berg and Neuhaus proposed the 

multicanonical algorithm [67][68], which has been applied to such problems in spin 

glasses, proteins and polymers.[75][76][77][78] The important aspect of this algorithm 

is the generation of a uniform sampling of configurations in energy space using 

artificial sampling weights instead of the Boltzmann weights. It means that the 

algorithm performs a random walk in energy space that allows the system to overcome 

energy barriers. From a set of sampling data, one can obtain thermodynamic averages 

at arbitrary temperatures and the calculation of the entropy and the free energy, both of 

which are associated with the partition function, is possible. Many researchers have 

attempted to improve the efficiency of such algorithms.[66][108] Recently an efficient 

algorithm for estimating the weight factors was developed by Wang and 

Landau.[71][72]  This algorithm consists of two steps; the first step is obtaining the 

artificial weight factors by recursive updates, which enables us to get a flat histogram 

from the uniform sampling data in the energy space and the second step is generating 

configurations using such weight factors and calculating physical quantities by 

re-weighting probabilities to conform to the Gibbs ensemble. This algorithm is 

efficient for evaluating the free energy, but in order to calculate the FEL, which is a 

function of the polarization per molecule, an extension is necessary. We use the 

two-dimensional Wang-Landau algorithm to obtain the proper weighting factor not 

only for the energy space, but also for the polarization space. This algorithm enables us 



 

 20 

to obtain the FEL for all possible ranges of the polarization at any temperatures. 

  The outline of our procedure is as follows. First we introduce the weight factor 

),( xEg  as a function of the energy E  and the average polarization per dipole x .  

The transition probability from ),( 11 xE  to ),( 22 xE  is then defined by 

 ( ) 1 1
1 1 2 2

2 2

( , )( , ) ( , ) min ,1
( , )

g E xp E x E x
g E x

⎡ ⎤
→ = ⎢ ⎥

⎣ ⎦
, (2.3.1) 

where ),( 11 xE  and ),( 22 xE  refer to states before and after a single dipole is 

flipped. Next we introduce the histogram ),( xEH  defined by the number of visits 

made to each state ),( xE . If we can make the histogram sufficiently flat using the 

transition rule (2.3.1), the density of states ),( xEn  will satisfy the following relation 

at arbitrary ),( 11 xE  and ),( 22 xE : 

 1 1 1 1

2 2 2 2

( , ) ( , )
( , ) ( , )

n E x g E x
n E x g E x

=  (2.3.2) 

To obtain a flat histogram, first we set 1),( =xEg  for all possible ranges of energy 

and polarization. If the system attains to the states of energy E  and polarization x  
for each time step during the update procedure Eq. (2.3.1), the weight factor is 

modified as ),(),( 0 xEgfxEg →  where 0f  is the modification factor set by 

71828.20 ≅= ef . If the transition ),(),( 2211 xExE →  is rejected, we also modify the 

factor as ),(),( 11011 xEgfxEg → . Iterating this update procedure yields the random 

walk in energy and polarization space and the modification of weight factors within the 

accuracy of 0f . When the histogram ),( xEH  becomes sufficiently flat, we update 

the modification factor 0f  as 01 ff =  and reset the histogram.  In practice, it is not 

easy to obtain a perfectly flat histogram, thus if ),( xEH  for all possible E  and x  

attains larger than 80% of the averaged value, ),( xEH , we regard the histogram is 

flat. This procedure will be repeated for new modification factor if  for 1>i  with 

1−= ii ff .  The updating of if  enables us to modify the weight factor more finely.  

We stop this iteration when 00000001.1<if . After we obtain the weight factors to 

satisfy Eq. (2.3.2), we can normalize the density of states ),( xEn  using the condition 

 
,

( , ) 2N

E x
n E x =∑ . (2.3.3) 
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Substituting Eq. (2.3.2) into (2.3.3) yields 

 

,

( , )( , ) 2
( , )

N

E x

g E xn E x
g E x

=
∑

. (2.3.4) 

Finally, from Eq. (2.2.6), we have the expression of the FEL as 

 ( , ) ln ( , ) expB

E B

k TF T x En E x
N N k T

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ . (2.3.5) 

In our simulation, we divide the regions of energy [-700,700] and polarization  

[-1.0,1.0] into 1401 and 81 segments, respectively. Since the directions of the dipoles 

are restricted to point inward to and outward from the central charged cavity, the 

periodic boundary conditions are not appropriate for our model. To avoid artificial 

errors from the boundary, we have used the open boundary condition. While we study 

the effects of the central charge upon the surrounding dipoles, we can suppress the 

influence of boundary dipoles by choosing a large lattice. The validity of the model can 

be easily checked by changing the lattice size. 

 

 

2.4 Density of State and Free Energy Landscape 
Following the procedure in the previous section, we have carried out simulations 

of a system composed of a charged cavity and 80 dipoles on the 99×  

two-dimensional square lattice with 85.1=μ  and 1=L . In order to adjust the lattice 

size, we repeated the simulations for the 77×  and 1111×  lattices and found that the 

properties of the FEL do not change qualitatively if the size is larger than 77× . The 

displacements from the lattice points obeyed a Gaussian distribution with the average 

0=jaδ  and the standard deviation 1.02 =jaδ . Using the two-dimensional 

Wang-Landau algorithm, we obtained the density of states (DOS) as the function of the 

energy E  and the polarization x , ),( Exn , for different central charges 0=q  and 

10 and the temperatures 20=T , 7 and 1. For comparison we also evaluated the 

average DOS, ),( Exn , used in the random energy model (REM) theory, where all 



 

 22 

dipole-dipole and charge-dipole interactions are assumed to have a random Gaussian 

distribution function. Although the REM theory assumes the unrealistic interactions 

among the molecules, this allows us to obtain a handy analytical expression for a FEL. 

The outline of the REM theory is explained in Appendix A. Note that, the theory 

may not predict the energy landscape properly at temperatures below the freezing point. 

Since a glassy system becomes frozen in low energy states such temperatures, the FEL 

has local minima in shape. However, since the theory averages over the local minima, 

the landscape is no longer a ragged function. 

In order to adapt the REM theory to the simulation model, we set the two sets of 

parameters for the zero central charge, q=0, and the strong central charge, q=10. For 

the former set, the average charge-dipole interaction is set as 0.0)( =qξ , the 

dipole-dipole interaction 05.0−=J , and their standard deviations 0.02 =Δξ  and 

91.02 =ΔJ , while for the latter, the parameters are set respectively 90.2)( −=qξ , 

05.0−=J , 64.142 =Δξ  and 91.02 =ΔJ . 

We plot ),(ln Exn  in Figs. 2.2(a) and 2.2(b), and ),(ln Exn  in Figs. 2.2(c) and 

2.2(d) as contour maps for 0=q  and 10=q , respectively. In the peak region 

denoted by the solid lines, both the simulation and REM for 0=q  show symmetrical 

profiles, whereas (b) and (d) for 10=q  show unsymmetrical ellipsoidal profiles in 

the x -direction due to the energy difference between the inner and outer directions of 

dipoles arising from the charge-dipole interaction.  For the low energy region 

0.200−<E , the distributions of ),(ln Exn  are always broader than those of 

),(ln Exn . This is because, to adapt to the simulation results, we have overestimated 

the width of a Gaussian distribution of the interaction energies used in the REM theory. 

The energy distribution from the simulation, which is not shown here, is characterized 

by the sum of narrower non-Gaussian peaks. 

The free energy landscape (FEL) is calculated from Eq. (2.3.5). For comparison 

we also have evaluated the FEL for the REM case from 

 

 



 

 23 
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  (2.4.1) 

  (2.4.2) 

with 

 ( ) 1 1 1 1ln ln
2 2 2 2

x x x xS Nx N∗ ⎡ ⎤+ + − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
, (2.4.3) 

by using the same parameters for the DOS calculation. (see Appendix A) The average 

solvation energy at polarization x  and the standard deviation of the solvation energy 

are expressed as )(xE  and EΔ , respectively. The FELs have two types of forms 

above and below a polarization-dependent phase transition temperature )(xTc . Figures 

2.3(a)-(c) show the FELs from the simulations (solid line) and the REM (dashed line) 

for zero central charge, 0=q . Figures 2.3(d)-(f) show corresponding data for the 

strong central charge, 10=q . The temperatures are set at 20=T , 7 and 1, the dotted 

lines in Figs. 2.3 represent the fourth-order polynomial fits ∑
=

=
4

1
)(

j

j
j xaxF  in 

addition to a constant term. 

The high temperature case, 20=T  is shown in Figs. 2.3(a) and 2.3(d). This 

temperature satisfies )(xTT c>  for the entire range of x  and the REM results 

denoted by the dashed lines are calculated only from Eq. (2.4.1). The FEL from the 

simulation exhibits a similar profile as REM results. Both curves are parabolic for 

small x  as predicted by the Born-Marcus theory, but the curvature increases for large 

x  due to the entropic contribution. In the REM case, this contribution arises from 

)(NxTS ∗  in Eq. (2.4.1) where )(NxS ∗  is a logarithmic function of x . To illustrate 

the effects of the entropic contribution, we expand ( )REM , /F x T N  in Eqs. (2.4.1) and 

(2.4.2) for small x  as 

  (2.4.4) 

  (2.4.5) 

where z  is the average number of dipoles interacting with each single dipoles. 

As can be seen from Eq. (2.4.4), when the temperature becomes high, the 

contribution of the second-order coefficient as well as the fourth-order contribution 
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increase. When a strong central charge is present, the dipoles tend to point outward to 

decrease the energy. In the case, the term proportional to x  in Eq. (2.4.4) also plays a 

role in the REM case, the minimum point of landscape shifts to the positive direction. 

In the simulation case, there is also a cubic contribution to the FEL. The fitting 

function now involves all terms as ∑
=

=
4

1
)(

j

j
j xaxF . The lack of the cubic term in the 

REM case is due to the oversimplification of charge-dipole interactions. In the 

simulation model, the intensity of the charge-dipole interactions change depending on 

the location of dipoles, which makes the FEL a complex function of the polarization. 

In contrast, the REM theory assumes a spatially uniform interaction which makes the 

free energy a linear function of the polarization.  

Figs. 2.3(b) and 2.3(e) show the intermediate temperature cases, 7=T . The REM 

results in the region of 8.0<x  for Fig. 2.3(b) and 6.0<x  for Fig. 2.3(e) are 

calculated from Eq. (2.4.1) to satisfy )(xTT c> , whereas those in the remaining 

regions are calculated from Eq. (2.4.2). The FELs calculated by the REM are broader 

than the simulated ones, especially in the region around 1=x  and 1−=x . As 

illustrated in Fig. 2.2, this can be explained by the fact that a profile of the lower part 

of average DOS is always broader because of the overestimation of energy distribution. 

In the same manner as in the high temperature case, the FELs can be well fitted by a 

polynomial function. As the temperature lowers, the fourth-order contribution of the 

fitting curves becomes large as is illustrated by the REM theory. For the fixed 

parameter 8.1−=Jz , the ratio 24 / aa  in Eq. (2.4.4) increases with decreasing 

temperature up to 6.3=T .  

Figs. 2.3(c) and 2.3(f) show the results for the low temperature case, 1=T . The 

REM results are calculated from Eq. (2.4.2), since this temperature meets )(xTT c<  

for the entire range of x . At this very low temperature, the simulated FELs are no 

longer smooth due to the presence of multiple local minima arising from the frustrated 

interaction among the dipoles. This roughness can be clearly distinguished from the 

numerical errors of the simulations, since the errors in these calculations are less than 

the line width in Fig. 2.3.   
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Notice that the roughness depends upon the disorder of the dipoles. Thus, if we 

make the ensemble average of the FELs for different configurations of dipoles, this 

roughness may be smoothed over. On the contrary, the landscape for the REM is 

smooth even at the low temperature, since the REM assumes the smooth Gaussian 

function for the average DOS.   

The profile of the FEL as shown in Fig. 2.3(c) is expressed by a quartic function 
4

4)( xaxF ≈ , instead of the parabolic function except for the small roughness of the 

lines. On the other hand in Eq. (2.4.5), the contribution of the parabolic term compared 

with quartic term is not negligible as 75.0/ 42 =aa  for 8.1−=Jz . Thus the quartic 

profile of the FEL can not be explained only by the entropic contribution. Since the 

dipole-dipole interactions are assumed to be Gaussian random variables, the complex 

interactions depending on the position of dipoles are not considered in the REM theory. 

Moreover the average energy at polarization x  is given by the parabolic form. The 

fact that the strong quartic dependence of the FEL is observed at the low temperature 

suggests that the average energy contains a quartic term due to the spatial correlation 

among dipoles.  

Fig. 2.3(f) illustrates the energy landscape for the strong central charge of 10=q . 

In addition to the parabolic and quartic contributions of x , the REM case exhibits the 

linear contribution, i.e., 4
4

2
21)( xaxaxaxF ++≈ , whereas for the simulation case 

exhibits the linear and cubic contributions, i.e., 4
4

3
3

2
21)( xaxaxaxaxF +++≈ . As 

explained in the Fig. 2.3(d), both the linear and cubic contributions arise from the 

charge-dipole interactions. Indeed, they appear even when we calculated the FEL for 

the model without the dipole-dipole interactions (not shown).  
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Figure 2.2: Counter maps of the logarithms of the density of states are plotted for the 

cases of (a) no central charge 0=q and (b) strong central charge 10=q . For 

comparison, the logarithms of the average density of states used in the REM 

approximation are also plotted as contour maps for the cases of (c) no central charge 

q=0 and (d) strong central charge q=10. 
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Figure 2.3: FELs as the function of the polarization in the cases of no central charge 

0=q , (a)-(c), and strong central charge 10=q , (d)-(e) for different three 

temperatures, 1=T , 7=T  and 20=T . The solid, dotted and dashed lines represent 

the results of our simulation, fourth-order polynomial fitting and the REM, 

respectively. 
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2.4 Conclusion 
We calculated the free energy landscape (FEL) as a function of polarization for a 

two-dimensional charge-dipole lattice model using the Wang-Landau algorithm. To 

elucidate the entropic contributions to the free energy, we supplemented the 

calculations using the random energy model (REM) approach by taking the parameters 

from the simulation model.  In the high temperature case without a central charge, the 

FELs calculated from the simulation and REM are parabolic in shape for small 

polarizations, as the Born-Marcus theory predicts. In the large polarization region, both 

the simulated and the REM results also include a small quartic contribution that arises 

from the entropic term in the definition of the free energy as pointed out by Onuchic 

and Wolynes.[57]  

For the strong central charge, the FEL becomes asymmetric as a result of 

charge-dipole interactions.  In addition to the quadratic and quartic terms, the FEL is 

fitted by linear and cubic terms in the simulation case whereas by a linear term only in 

the REM case, because the REM theory oversimplifies the form of the charge-dipole 

interactions. 

When the temperature decreases, the difference between the simulation and REM 

results becomes pronounced. This can be explained more clearly when we plot the 

density of states (DOS) as a function of both energy and polarization. The REM results 

exhibit a broad DOS due to the overestimation of the interaction energies chosen to 

adjust the simulation model to the REM theory. In the low temperature case, the FEL 

observed in the simulations is no longer smooth. The roughness arises from the 

inhomogeneous charge-dipole and dipole-dipole interactions and depends upon the 

positions of the dipoles. By ignoring this roughness, the profile of the FEL is fitted by 

a polynomial function up to the fourth-order of the polarization. As in the high 

temperature case, the linear and cubic contributions appear when the strong central 

charge is introduced. 

In this Chapter we have calculated the FELs for a system composed of a charged 

cavity and dipoles which are restricted to point only to two directions. The present 
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model is too simple to describe many important effects involved in solvation dynamics, 

such as librational motion. Generalization to a realistic model with the large degrees of 

freedom in three-dimensional space is necessary to explore the universality of our 

results. Thermal as well as dynamical aspects of such system are important to relate the 

FEL to real experiments of a relaxation.  
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Chapter 3 
Free Energy Landscape Analysis for 
Electron Transfer System 
 

3.1 Introduction 
The free energy landscape (FEL) of electron transfer (ET) system is of 

fundamental importance to account for ET rates in solvent as recognized by 

Marcus.[3][4]  In this context, the FELs of the reactant and product are expressed in 

terms of a reaction coordinate consisting of reactant and product along with their 

surrounding of solvent. Marcus evaluated the free energy of a given polarization and 

calculated the ET reaction rates as 

 
( )2

exp
4 B

G
k

k T
λ + Δ

−
λ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∼  (3.1.1) 

where λ  and GΔ−  are the reorganization energy and the energy gap, respectively. 

From the above expression, the energy gap law, Marcus has predicted that the inverted 

parabolic or bell-shaped dependence of ET rates as the function of energy gap, which 

indicates the ET rates increase in the small energy gap region (the normal region), 

whereas they decrease in the large energy gap region (the inverted region). His 

expression was based on a continuum dielectric model of solvent and thus the 

molecular aspects of the solvent were missing. 

Although Marcus’s theory explained the energy gap dependence reasonably well 

[14][15][16], such macroscopic continuum model is not sufficient to describe ET 

processes especially for dynamics of solvent.[109] The FELs of the macroscopic 

dielectric system were given by a functional form of polarization.[4][110] To calculate 

the FELs using models based on the microscopic molecular details, one has to define 

relevant reaction coordinates. Taking statistical mechanics approach, Marcus has 

explored ways to abstract small dimensional coordinates from the multidimensional 

phase space using the technique of equivalent equilibrium distribution.[111] His idea 

was later developed and utilized for the calculation of the ET rate by computer 
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simulations.[112] Calef and Wolynes showed that a reaction coordinate could be 

adequately defined by the microscopic interaction energy [17][18], and several 

computer simulations were carried out using the reaction coordinate which has the  

energy dimension to confirm the legitimacy of Marcus’s theory.[21][22][23][24] An 

expression of the free energy in terms of molecular distribution function including 

dipole interactions was also given by using a density functional theory.[113][114]  

Here, we introduce a factor { }( )iRf  for configuration coordinates of solvent 

{ }iR  as 

 { }( ) { }( ) { }( )R P
i i if R E R E R≡ − , (3.1.2) 

where { }( ) { }( ) { }( )i i i
i d s i s s iE R E R E R− −≡ +  is the interaction energy for reactant 

( i R= ) or product ( i P= ) consisting the solvent-solute interaction energy, 

{ }( )i
d s iE R− , and solvent dipole-dipole energy { }( )i

s s iE R− .[19][20] If we define the 

FELs of reactant and product by 

 ( ) { }( )( ) { }( )( )( )1, ln exp /i i
B N i i BG x T k T dR dR x f R E R k Tδ= − − −∫ " , (3.1.3) 

the free energies of the reactant and the product satisfy the relation, 

 ( , ) ( , )R PG x T x G x T= + . (3.1.4) 

Suppose if the FEL is expressed in a quadratic form as 

 2( , )RG x T ax bx= + , (3.1.5) 

the ET rates are then evaluated as Eq.(3.1.1), in which G−Δ  is the energy gap 

between the two surfaces and a4/1=λ .  

At present, the FEL for ET processes is fairly understood at least for the 

high-temperature case, where the FEL is well approximated by the parabolic function. 

At low temperature, however, it is difficult to calculate the reaction rates, since the 

solvent molecules have enormous degrees of freedom and there are too many local 

minima that trap molecular motions to acquire the reliable FELs. In order to deal with 

such problem, a simple model is often introduced to reduce the degrees of freedom as 
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mentioned in Chapter 1. To study a possible role of solvent molecules influencing the 

electron transfer (ET) or charge transfer (CT) reaction rates in glassy phase, we have 

utilized the minimalist model approach.[57] 

In this chapter, a survey of the FELs for the extended minimalist model as the 

function of x  defined by Eqs. (3.1.2) and (3.1.3) at temperatures below and above the 

freezing point. In Sec. 3.2, we describe the model and the reaction coordinate. In Sec. 

3.3, the FELs for different temperatures are numerically calculated by generating all 

possible states for a 26-dipolar-system and by employing Wang-Landau sampling 

algorithm for a 92-dipolar-system. From the calculated FELs, the ET reaction rates are 

also evaluated. The final section is devoted to the conclusion. 

 

 

3.2 Simulation Model and Reaction Coordinate 
To adapt minimalist model for ET reaction process, we have replaced the central 

charged cavity by a solute dipole moment. Then we configure the solvent dipoles 

around the solute dipole on the three-dimensional distorted lattice with the lattice 

constant L . We have treated all solute-solvent and solvent-solvent interactions 

explicitly, whereas they were assumed to be random Gaussian interactions in the 

original minimalist model with the random energy model (REM) analysis. The 

schematic view of our modified model is depicted in Fig. 3.1. The solute dipole 

moment is represented by i
dμz , where z  is the unit vector in the z direction and i

dμ  

denotes the magnitude of the solute dipole for the reactant ( i R= ) and the product 

( i P= ). We denote the position of each solvent dipole as jjj aar δ+= , where ja  is 

the j th lattice point vector and jaδ  is the random displacement from the lattice 

point. The magnitude and the direction of the jth solvent dipole is denoted by solvμ  

and the unit vector jS , respectively, where ||/ jjj rrS = . If we introduce the sign 

operator 1±=jσ , where the sign depends on whether the dipoles are pointing toward 

or away from the solute dipole, the dipole movement is expressed as solv j jμ σ− S . Thus 

all the interactions among solute and solvent dipoles are expressed as 
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 ( ) ( ) ( ), ,i i i i
d d s d s sE E Eμ μ− −= +σ σ σ . (3.2.1) 

Here, the energy of the solute-solvent and the solvent-solvent dipoles are defined by 

 ( ) ( )
1

,
N

i i i
d s d j d j

j
E gμ μ σ−

=

= ∑σ  (3.2.2) 

and 

 ( )
1

2 1

N j

s s jk j k
j k

E h σ σ
−

−
= =

= ∑∑σ , (3.2.3) 

respectively, where 

 ( ) ( )( )2

5

3j j j j ji i
j d solv d

j

g μ μ μ
⋅ − ⋅ ⋅

= −
S z r S r z r

r
 (3.2.4) 

and 

 ( )( )2
2

5

3j k jk j jk k jk
jk solv

jk

h μ
⋅ − ⋅ ⋅

=
S S r S r S r

r
 (3.2.5) 

with kjjk rrr −= , and N  is the total number of solvent dipoles This system exhibits 

a glassy behavior at the low temperatures because of the complex interactions among 

the solvent dipoles with the structural disorder. We chose values typical of ET or CT 

systems in polar solvents as 85.1=solvμ  and 1=L  in the unit of Debye and the unit 

of 2.1
D
A , respectively. The characteristic energy is then evaluated as 201008.1 −×=ΔU  

J, which is about 2.5( TkB ) at room temperature. We employ two types of system: one 

is 333 ××  lattice sites and the other is 5 5 5× ×  lattice, but we omit four dipoles on 

each corner of the lattice for later system due to the limitation of our CPU power. Thus, 

we used a total of 26 and 92 dipoles for their calculations. We utilize the open 

boundary condition to avoid undesired effects arise from the treatment of boundary. 

The displacements from the lattice points obey a Gaussian distribution with average 

0=jaδ  and standard deviation 1.02 =jaδ .  

For our model, we rewrite Eq. (3.1.2) as 

 ( ) ( ) ( ), ,R R P P
d df E Eμ μ= −σ σ σ . (3.2.6) 
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The FELs of the reactant ( i R= ) and the product ( i P= ) are calculated from 

 ( ) ( )
( )| |

,1, ln exp
i i

di
B

f x x B

E
G x T k T

C k T− <Δ

⎛ ⎞μ
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

∑
σ

σ
. (3.2.7) 

Here, the summation has taken over all configurations for which ( )σf  takes a value 

between 2/xx Δ−  and 2/xx Δ+ , where xΔ  is the segment (mesh) size of the 

reaction coordinate. We introduce the dimensionless constant C to adjust the position 

of ( )TxG i , . When we set C to be proportional to xΔ , the position of the energy 

landscape of various segment sizes can be fixed if the assigned temperatures are the 

same. In the following calculations, we set UxC ΔΔ= / , where 201008.1 −×=ΔU J is 

the characteristic energy of the system. In Eq. (3.2.7), we adopt 0=R
dμ  and 2=P

dμ  

for a situation: a neutral solute is surrounded by the solvent in the reactant state and the 

ET reaction occurs then is polarized.  

For the 26-dipolar-case, we evaluate Eq. (3.2.7) by generating all configurations 

of σ  and classifying ( )σf  in the range ( )/ 2 / 2i ix x f x x− Δ ≤ < + Δσ  for ith 

segment ix , which satisfies ii xxx −=Δ +1 . Although we can obtain the exact FEL for 

any xΔ  in such small system, we cannot generate all configurations by any means for 

a large system. For example, a system with 92 dipoles involves enormous degrees of 

freedom even with directional restrictions of the dipoles ( 922∼ ). Thus, it is essential to 

sample relevant states for constructing the FEL, and then to use the Wang-Landau 

algorithm explained in Chapter 2. We employ the reaction coordinate x  defined in 

Eqs. (3.2.6) and (3.2.7)  instead of the polarization and adapt the two-dimensional 

Wang-Landau algorithm to calculate the FEL. The parameters or conditions used in the 

algorithm are shown as follows.  

When the histogram ),( xEH  defined by the number of sampled states ( )xE,  

attains larger than 70% of the average value, ),( xEH , for all possible ranges, we 

regard the sampling as having been done uniformly in the energy and reaction 

coordinate space. In order to generate the sampling weight, we divide the regions of 

energy -2000< /E UΔ <2000 and reaction coordinate -100< /x UΔ <100 into 4001 
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and ( ) 1/200 +ΔΔ xU  segments, respectively. We generate the density of states (DOS) 

after obtaining the artificial weight factors by recursive updates which enables us to 

obtain a flat histogram of the uniform sampling data in the energy and reaction 

coordinate spaces. We then calculate the FEL as the function of x by re-weighting 

probabilities to conform to the Gibbs ensemble. 

 

 

 

 

Figure 3.1: A schematic view of a solute and solvent model. A solute molecule is 

represented by a dipole on the center of three-dimensional square lattice. Solvent 

molecules are expressed by dipoles located on the disordered lattice sites surrounding 

the central dipoles. Each solvent dipole is allowed to direct only two directions, toward 

and opposite to the central dipole. 
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3.3 Results and Discussion 
A. Free Energy Landscapes of a 26-Dipolar-System 

Figures 3.2 (a)-(d) illustrate the free energy landscapes (FELs) of a distorted 

333 ××  square lattice system with 26 dipoles for different temperatures and segment 

sizes: (a) 10=T  and 110−=Δx , (b) 1=T  and 110−=Δx  , (c) 10=T  and 
310−=Δx  , and (d) 1=T  and 310−=Δx  in the unit of 201008.1 −×=ΔU J.  Here 

and hereafter we set 1=Bk . We have analyzed the temperature dependence of the heat 

capacity and found a sharp peak at 2≈cT  that corresponded to the freezing 

temperature of dipolar rotational motions. Thus the cases for (b) and (d) are in a glassy 

state. These landscapes are directly calculated from Eq.(3.2.7) by generating all 

possible dipolar states numerically and are not obtained from the Wang-Landau 

approach. Such exact calculations can be carried out only for a small system with 262  

dipolar configurations. Since this system is too small to extract reasonable free energy 

profiles, we have observed a change of curvature around / 0.2x N =  as an artifact 

of the small system. We have used these results to analyze the segment size of the 

reaction coordinate, which has to be introduced to calculate the free energy of larger 

systems. 

While the FEL becomes smooth at high temperature as illustrated in Fig. 3.2(a), it 

exhibits the small notched structure (roughness) on the profile at low temperature as in 

Fig. 3.2(b). This feature can be explained from the distribution of states as a function 

of reaction coordinate x and energy E as schematically depicted by dots in Fig. 3.3. At 

the high temperature, all states in the segment between / 2ix x− Δ  and / 2ix x+ Δ  

contributes to ( ),R
iG x T , while only the lower energy part of states in the segment 

contributes to ( ),R
iG x T  at the low temperature due to the Boltzmann factor in 

Eq.(3.2.7) as indicated with solid line in Fig. 3.3. Since the number of states is sparse 

in the lower energy region, ( ),RG x T  changes rapidly as the function of x depending 

on the position of the low energy states. This feature becomes prominent especially for 

small xΔ , where only a few states can take part in for calculations of ( ),R
iG x T .  

In this case, as shown in Fig.3.2(c), we have also observed the notched profiles of the 
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landscape even at the high temperature. 

Using the exact distribution of states, we analyzed the statistics of the notched 

structure. First, we extrapolate the profiles of the FEL up to sixth-order using the 

fitting function ( ) ( )∑
=

=
3

0

2/
k

k
i

R
fit NxaxG for the range 2.0/ ≤Nx . Due to the 

conditions of ( ) ( )σσ −−= ff  and ( ) ( )σσ −= ,, R
d

RR
d

R EE μμ , ( ),RG x T  is 

symmetric with respect to 0=x  and the polynomial function does not contain the 

odd-order terms. Then we subtract ( )xG R
fit  from NTxG R /),(  and obtain the 

notched part of free energy as ( ) ( ) ( )i
R
fiti

R
i xGNTxGxG −= /,δ , where ix  is the 

value of the reaction coordinate at ith segment which satisfies ii xxx −=Δ +1 . 

NTxG R /),(  for 1=T  and 210−=Δx  is depicted in Fig. 3.4 with solid line and the 

fitted line is with the dashed line, in which the fitting parameters are 75.67316 =a , 

4 307a = − , 2 3.9a =  and 0 2.26a = − . The inset of Fig. 3.4 shows the histogram of 

( )iG xδ  and the fitted normal distribution with dashed line where the average and the 

standard deviation are 0.0=Gδ  and 098.02 =Gδ , respectively. In the small 

region of x, where the Gaussian fitting works well, the sequence of ( )ixGδ  is 

uncorrelated at the different 'ix  and thus ( )ixGδ  can be regarded as the white noise 

with respect to ix . 

Calculated 2Gδ  as the function of temperature for different xΔ  is plotted in 

Fig. 3.5.  The amplitude 2Gδ  tends to be large for small xΔ , since the number of 

the states involved in the free energy calculations becomes small and the statistical 

deviation becomes large.  For 10T < , the amplitude becomes large for small T , 

since only lower energy states in the segment can contribute to the free energy 

calculations due to the Boltzmann factor in Eq. (3.2.7).  At very low T , the lowest 

energy state in the segment dominate the free energy and thus we have 

( ) min,R
i iG x T E≈ , where min

iE  is the lowest energy in the ith segment and therefore 

the FELs becomes temperature independent.  For 10>T , 2Gδ  increases as the 

temperature increases. At such high temperature, the Boltzmann factor play a lesser 

role and thus the total number of states, n(xi), in the ith segment determines the value 

of the free energy as )(ln iB xnTk− . Since n(xi) may change rapidly for small xΔ , the 
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amplitude will also change. 

In Fig. 3.6, we plot UG Δ/2δ  as the function of Ux ΔΔ /  for different 

temperatures, where UΔ  is the characteristic energy scale for the system. The 

calculated results can be well fitted by the linear functions in the logarithmic scales. 

This indicates that we can always extrapolate their amplitudes 2Gδ  from the values 

in large xΔ . 

Since the lowest energy min
iE  determines the free energy in the individual 

segments especially for the low temperature case, the differences of the lowest energy 

among the different segments give rise to the notched structure. To see this point more 

clearly, we consider the change of the total energy and the reaction coordinate by 

flipping one dipole while others being fixed. The energy of the k th dipole is evaluated 

as 

 

( ) 2

2

k k kj k j
j k

k j
j k

E h

h
≠

≠

Δ σ → −σ = − σ σ

≈ − σ σ

∑

∑
, (3.3.1) 

where the interaction parameter kjh  is approximated by their mean value h  defined 

by 

 
1

1 1
1

N

kj
k j k

h h
N N= ≠

⎛ ⎞
≡ ⎜ ⎟−⎝ ⎠

∑ ∑ . (3.3.2) 

Similarly, the change of the reaction coordinate by flipping one dipole is given by 

 
( ) ( )2

2

P
k k k d k

k

x g

g

Δ σ →−σ = μ σ

≈ σ
, (3.3.3) 

where the solute-solvent interaction parameter ( )P
dkg μ  is approximated by their mean 

value 

 ( )
1

1 N
P

k d
k

g g
N

μ
=

= ∑ . (3.3.4) 

If all configurations of { }Nkk σσσσ "" ,,,, 111 +−  occur with the same probability, 
12/1 −N , the fluctuation (standard deviation) of the total energy and reaction coordinate 
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by flipping one dipole are given by 

 ( )2 1flipE h NΔ = − , (3.3.5) 

and 

 2flipx gΔ = , (3.3.6) 

respectively. For the 26-dipolar-system, they are evaluated as 0.9h =  and 0.05g = , 

and we have 0.1flipxΔ =  and / 0.3flipE NΔ = . These values are roughly in 

accordance with the relation in Fig. 3.6, which indicates that the amplitude of the 

notched structures relates to the flipping energy and the corresponding change of the 

reaction coordinate. We should also notice that although the true FELs have the 

notched structures whose scale is much smaller than flipxΔ , a real transition may 

occur only through the flipping of dipoles. Therefore the structure smaller than flipxΔ  

on the FELs may not affect reaction processes. 
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Figure 3.2: The free energy landscapes of a distorted 333 ××  square lattice system 

with 26 dipoles for different temperatures T  and segment sizes xΔ : (a) 10=T  and 
110−=Δx , (b) 1=T  and 110−=Δx , (c) 10=T  and 310−=Δx  , and (d) 1=T  and 
310−=Δx . T  and xΔ are measured in the unit of 201008.1 −×=ΔU J and we set 

1Bk = . 
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xi  

Figure 3.3: The dots illustrate the schematic view of the distribution of states as a 

function of reaction coordinate x and energy E . Solid line represents the lower energy 

part of states in a segment. The profile of the lower energy part is essential to 

determine the FEL especially at low temperature. 
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Figure 3.4: The free energy landscape (solid line) and fitted curve (dashed line) of a 

distorted 333 ××  lattice model for 1=T  and 210−=Δx . The fitting function is 

( ) ( )∑
=

=
3

0

2/
k

k
i

R
fit NxaxG  with parameters 75.67316 =a , 4 307a = − , 2 3.9a =  and 

0 2.26a = − . The inset of the figure shows the histogram of ( )iG xδ , which is fitted by 

the normal distribution (dashed line) with the average 0.0=Gδ  and the standard 

deviation 098.02 =Gδ . 

 

 



 

 44 

 

 

 

 

 

 

 

 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  5  10  15  20  25  30  35  40  45  50

Δx =1
Δx = −10 1

Δx = −10 2

Δx = −10 3

Δx = −10 4

δG
2

T

×( )ΔU

×( )ΔU

 

Figure 3.5: The standard deviation 2Gδ  for the 26-dipolar-system as the function of 

the temperature for various segment sizes. 
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Figure 3.6: The standard deviation  UG Δ/2δ  for the 26-dipolar-system as the 

function of the segment size Ux ΔΔ / , where UΔ  is the characteristic energy scale of 

the system. The calculated results can be well fitted by the linear functions in the 

logarithmic scales.  
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B. Free Energy Landscapes of a 92-Dipolar-System 
Since the number of states is too large to generate for the 92 dipolar system, we 

sample the states using the Wang-Landau algorithm. We calculate a density of states 

for the finite segment size xΔ  and EΔ .  In Fig. 3.7, we present the contour plot of 

the logarithms for density of states ( )ln ,D x E , for 110−=Δx  and 1=ΔE obtained by 

the Wang-Landau approach. From the density of states, the free energy landscapes 

(FELs) are calculated as 

 ( ) ( )
/ 2

/ 2

1, ln , exp
x xR

B x x
B

EG x T k T dE dxD x E
C k T

∞ +Δ

−∞ −Δ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫ ∫ . (3.3.7) 

Figure 3.8 depicts the calculated FELs of the reactant state NTxG R /),(  with 
110−=Δx  for two different temperatures (a) 10=T  and (b) 1=T . In the same 

manner as the 26 dipolar system, we estimated the freezing temperature at 4≈cT . The 

solid lines in Figs. 3.8(a) and (b) are the calculated results, while the dotted lines 

represent fitting curves with the parabolic function ( )2/)( NxxG βα +=  for the 

range 2.0/ ≤Nx . The parameters are chosen to be (a) 7.7α = −  and 5.2β = , and 

(b) 4.6α = −  and 5.1β = . Note that the presented results are for the specific set of 

the positions for dipoles and the quadratic region of the FEL may change slightly 

depending on the distribution of dipoles. 

The calculated FEL for the 92-dipolar-system at high temperature is depicted in Fig. 

3.8(a). As discussed in the 26-dipolor-system, the profile of the FEL is governed by the 

number of states ( )ixn  at high temperature. If we assume the energy distribution of 

states in Gaussian form with the central energy iE  and the standard deviation iEΔ , 

the free energy is evaluated as 

 
( ) ( )

( )

( )

2

2

2

1, ln exp exp
22

               = ln
2

i
R

i B i
i Bi

i
iB i

B

E E EG x T k T n x dE
E k TE

Ek T n x E
k T

π

⎛ ⎞− ⎛ ⎞⎜ ⎟≈ − − −⎜ ⎟⎜ ⎟ΔΔ ⎜ ⎟ ⎝ ⎠
⎝ ⎠

Δ
− + −

∫
, (3.3.8) 

where ix  is the ith segment with the region between / 2ix x− Δ  and / 2ix x+ Δ . 
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Near the minimum of free energy surfaces 2.0/ ≤Nx , since a large number of states 

are involved in ( )n x , we can assume Gaussian form for ( )n x  based on the central 

limiting theorem. For the high temperature case, the contribution from ( )lnB ik T n x−  

is large and therefore we have the parabolic energy landscapes for 2.0/ ≤Nx . For 

large Nx / , however, )(xn  contains only a small number of states and deviates 

from Gaussian due to the failure of the central limiting theorem. (See also Fig. 3.7). 

Consequently, ),( ExG R  shows parabolic and non-parabolic profiles for small and 

large Nx / , respectively. We should notice, however, that although such feature 

exists for any system, the deviation from the parabola may be too small to observe in a 

real system, since it contains tremendous degrees of freedom that makes the deviation 

very small. 

Figure 3.8(b) shows the FEL for 1=T . In the low temperature case, FELs are 

determined by the lower energy part of distribution D(x, E), because the Boltzmann 

weight in Eq.(3.3.7) suppress the higher energy contributions. Since the lower energy 

part of D(x, E) is not a smooth function of x as illustrated in Fig. 3.7, the calculated 

FELs at low temperature exhibit the notched structure as presented in Fig. 3.8 (b). 

Following the same procedure as the 26-dipolar-system, we have extracted the notched 

part ( )xGδ  for all ranges of x  and analyzed their statistics. The amplitude of the 

notched part of profiles 2Gδ changes depending upon the size of xΔ . Due to the 

limitation of CPU power; however, we can calculate the values of 2Gδ  for low 

temperature 1=T  only for relatively large segments, i.e. 1.0=Δx , 5.0  and 1 .  

Thus, by assuming the relation between xΔ  and 2Gδ  found in 3.3.A, here we 

have extrapolated the value of 2Gδ  for small xΔ  and found 

87.2/log15.0/ln 2 −ΔΔ−=Δ UxUGδ . This relation is in accordance with the 

change of the total energy and the reaction coordinate by flipping one dipole 

represented by /flipE NΔ  and flipxΔ .  In the 92-dipolar-system, we estimate the 

average solute-solute and solute-solvent interaction energies as 0.27h =  and 

0.01g = − , respectively, and therefore we have 0.02flipxΔ =  and 

/ 0.06flipE NΔ = . From the extrapolated function, we have 2 0.07Gδ =  if we 
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regard flipxΔ  as the segment size. This value is roughly in accordance with 

/flipE NΔ , which indicates the changes of energy for flipping dipoles are reflecting 

the amplitude 2Gδ . 

For a system with large degrees of freedom, the minimal values of xΔ  can be very 

small, but, the energy landscape with the segment size flipx xΔ ≈ Δ  is of practical 

importance for reaction process as mentioned in 3.3.A. 
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Figure 3.7: The contour plot of the logarithms of the density of states, ( )ln ,D x E , for 

the 92-dipolar-system. The segment sizes for the reaction coordinate and energy are 

chosen to be 110−=Δx  and 1=ΔE , respectively.  The density of states is obtained 

by the Wang-Landau approach. 
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Figure 3.8: The calculated free energy landscapes for the 92 dipolar system 

NTxG R /),(  with 110−=Δx  for different temperatures (a) 10=T  and (b) 1=T , 

respectively. 
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C. Energy Gap Low for ET Reaction Rates 
The FEL for ( )TxG P ,  is obtained from ( ),RG x T  by using Eq. (3.1.4). Using 

the energy landscapes for the 92-dipolar-system, we calculate the activation energy 

G≠Δ  as the function of energy gap GΔ .  If we denote the minimum values of the 

reactant and product states as RGmin  and PGmin , respectively,  and express the crossing 

point of the two surfaces as x≠ , we have 

 ( ) ( )min min, ,R R P PG x T G G x T G G≠ ≠− = − + Δ  (3.3.9) 

which allows us to calculate x≠  for fixed GΔ . Since the activation energy G≠Δ  is 

given by 

 ( ){ }min,R RG G x T G≠ ≠Δ = − , (3.3.10) 

we can depict the energy gap law by plotting ≠Δ− G  as the function of GΔ− .  

Figure 3.9 shows the energy gap dependence of the activation energy at the 

temperatures 10=T  (dashed line) and 1=T  (solid line) calculated from the energy 

landscapes with the segment size 1.0=Δx , which is slightly larger than flipxΔ . All 

curves of the activation energy are symmetric with respect to the maximum point, 

since the FEL for the reactant states is the even function. In the low temperature case, 

1=T , the energy gap law exhibits roughness reflected on the notched structure of the 

energy landscape. Although the profiles of the roughness may change depending upon 

xΔ , the segment size smaller than flipxΔ  is not necessary to consider the reaction 

processes because the states can only change through the dipolar flipping in the order 

of flipxΔ . Notice that the microscopic profiles of the roughness differ depending on 

the distribution of the dipolar positions and if we take an ensemble average for 

different distributions, such small roughness on the activation energy may not be 

observed. 

Due to the non-parabolic shape of energy landscapes, the energy landscapes are 

not quadratic besides small | x |. The calculated energy gap decreases faster than the 

quadratic function besides the range about 0.2GΔ ≤ . This deviation becomes large 
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for high temperature case, since the FEL becomes steep as explained by Eq.(3.3.8).  

The energy gap low, Eq. (3.1.1), indicates the maximum reaction rate depends on 

the reorganization energy λ . When a temperature rises, the profile of activation 

energy also shifts to the left for 10T ≥  as illustrate in Fig. 3.10. For high temperature 

case, the FEL can be written as ( ) ( ), lnR
BG x T k T n x≈ − . Since ( )n x  is 

approximated by a temperature-independent Gaussian function for small x , we can 

express the free energy as 

 
2

min
1( , )

2
P PG x T aT x G

aT
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (3.3.11) 

where a  is some constant and min
PG  satisfies min min 1/ 4P RG G aT= − . Since the 

crossing point and the activation energy are expressed as 1/ 4x G aT≠ = Δ +  and 

 
( ) ( )( )

( )

2

4
G T

G
T
λ

λ
≠

−Δ −
−Δ = − , (3.3.12) 

respectively, the peak position of the activation energy is equal to the reorganization 

energy ( ) 1/ 4T aTλ = . The peak positions of the calculated results are plotted in Fig. 

3.10. These results are well fitted by ( ) 1/ 4T aTλ =  with 34.9 10a −= ×  as illustrated 

by the solid line in the figure. For studying the solvation saturation effect, Milischuk 

and Matyushov utilized the relation that the reorganization energy is proportional to 

1/T  for a dipolar solvation system at constant volume.[115] The present results are 

consistent with their analysis. 
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Figure 3.9: The energy gap dependence of the activation energy at the temperatures 

10T =  (dashed line) and 1T =  (solid line) calculated from the energy landscapes 

with 0.1xΔ = . 
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Figure 3.10: The reorganization energy, ( )Tλ , which gives the minimum activation 

energy is plotted for different temperatures for 10≥T  (dots). The solid line 

represents the fitting curve, ( ) 1/ 4T aTλ = , with 3109.4 −×=a . 
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3.4 Conclusion 
We calculated the free energy landscape (FEL) by generating all possible states 

for a 26-dipolar-system and by using the Wang-Landau sampling algorithm for a 

92-dipolar-system. Using the results from the 26-dipolar-system, we analyzed the 

notched structure of the free energy profiles for different segment sizes of the reaction 

coordinate xΔ . The notched part arose due to the difference in the lowest energy 

states between the segments. The amplitude, the standard deviation, of the notched part 
2Gδ increased as the segment size decreased especially for low temperatures. The 

relation between the segment size and the amplitude was in accordance with the 

relation between the change of reaction coordinate flipxΔ  and the total energy flipEΔ  

by flipping a dipole of the system. Although the true free FELs had notched structures 

whose scale is smaller than flipxΔ , a real transition may occur only through the 

flipping of dipoles. Therefore the scale of xΔ  smaller than that of flipxΔ  may not 

affect on the reaction processes. 

Our analysis in the 92-dipolar-system showed that the FEL has a parabolic shape 

for the small reaction coordinate region at high temperature as the Marcus theory 

predicted. In the large reaction coordinate region, the profiles exhibited a non-quadratic 

shape, since the number of states for such segment region was very small and the 

distribution of states becomes non-Gaussian. At low temperatures, we had estimated 

the amplitude of the notched part and compared with flipxΔ  and flipEΔ  for the 

92-dipolar-system. These values were also in accordance with the relation between 

xΔ  and  2Gδ . Although we could not calculate 2Gδ  for very small xΔ , we 

could evaluate 2Gδ  for any xΔ  with the relation found in the 26-dipolar-system. 

We should mention that the directions of solvent dipoles used in this model are 

restricted to pointing toward and opposite to the central solute dipole. This makes a 

system extremely frustrated and the energy of the solvent dipoles in the equilibrium 

state becomes much higher than that of a crystal with dipolar orientational relaxation. 

The FELs below the freezing temperature may be smoother for a realistic system due 

to the continuity of rotational motion of a solvent dipole.  
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Finally, the activation energy as the function of the energy gap was calculated by 

using the FEL for the 92-dipolar-system. At high temperatures, the bell shaped reaction 

rate was observed. Due to the non-quadratic FEL, the non-quadratic dependency 

appeared as the energy gap increased. Thus the profile of the calculated reaction rate 

became steeper than that derived from the quadratic FEL. When the temperature 

decreased, the parabolic profile of activation energy G≠Δ  shifted to the lower energy 

part of GΔ , since the value of the free energy was proportional to the temperature at 

the high temperature regime. At low temperatures, the profile of the reaction rate 

became rough due to the notched structure of the FEL. The appearance of roughness is 

depended on the distributions of dipolar positions and if we take an ensemble average 

for different distribution of dipoles, this roughness may not be observed. In such case, 

one should explore dynamical as well as thermal aspects of the system by means of the 

nonlinear response function to separate inhomogeneous and homogeneous 

contributions of reaction processes.[116]  
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Chapter 4 
Exploring a Free Energy Landscape by 
Means of Multidimensional Infrared 
Spectroscopy 
 

4.1 Introduction 
The stable structures of atomic or molecular system under the thermal equilibrium 

are determined by the contribution of the interaction energy and entropy.[6][7][8] The 

free energy landscape (FEL) is the effective potential which contains both effects and 

is wildly used in several research fields. In glass and amorphous solid, inhomogeneous 

structure of molecules accompanied by the quenching temperature [1][117] and the 

native structure of proteins[118][119] are discussed in terms of the FEL. In addition to 

understanding the stable structure of the systems, the FEL is of fundamental 

importance to understand the inverted parabolic or bell shaped dependence of the 

electron transfer (ET) rate.[3][4] 

As mentioned in the Chapter 1, the FEL has been used in the framework for the 

time-dependent-Ginzburg-Landau (TDGL) approach to investigate dynamical 

phenomena of superconductors [11], domain walls and interfaces.[12][13] However 

there is a possibility that the dynamical behavior is an independent issue for the FEL, 

since the FEL is defined under the thermal equilibrium. In addition the FEL is highly 

conceptual quantity because it is not direct observable. A final goal of our research is to 

relate the structure of the FEL to the system dynamics on the FEL.  

We have employed a simple model representing a dipolar crystal system to reduce 

the degrees of freedom as was done for protein [44] and solvated ion system.[25] 

[57][61][64] We consider the system consists of dipoles[120][121] and employ this 

model to calculate the FEL at various temperatures by generating all possible states. 

We depict the FEL as the function of total dipole moments (polarization), which is the 

macroscopic observable of the system. We monitor the dynamics not only by linear 

absorption spectroscopy, but also by multidimensional spectroscopy. The sensitivity of 
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two-dimensional (2D) spectroscopy is utilized to characterize the dynamics on 

different FELs.  Here, we calculate two-dimensional signals corresponding to infrared 

(IR) and far IR defined by the four-body correlation functions of dipole operators. 

The outline of this chapter is as follows. In the next section we briefly explain our 

simulation model and procedure to calculate the FEL. In section 4.3, we set up the 

master equations for the present model corresponding to the single flip and 

single-double mixed flips dynamics. The procedures to calculate linear absorption and 

third-order 2D signals are also explained. We present the calculated FEL in Sec. 4.4.  

The 1D and 2D signals calculated from the microscopic master equation approach and 

their analysis are given in Sec. 4.5. We compare our microscopic results with the 

signals calculated from the phenomenological Smoluchowski equation approach in Sec. 

4.6. We close with our conclusions in Sec. 4.7. 

 

 

4.2 Simulation Model 
We start by assuming regular and distorted two-dimensional lattice models for 

dipolar molecules, which is an extension of our formally used models developed to 

analyze the energy landscape.[25][26] The position of each dipole is given by 

j j jδ= +r a a  where ja  is the j th lattice point vector and jδa  is the random 

displacement from lattice point.  The j th dipole is described by the angle jθ  and 

the fixed dipole strength μ ; that dipole moment is then expressed as ( )j jμ θS , where 

( ) ( )cos ,sinj j j jθ θ θ=S  is the unit vector of the dipole moment.  All dipoles interact 

through the dipole-dipole interaction expressed in the set of angels { }jθ=θ  as  

 ( ) ( )
1

2

2 1
,

jN

jk j k
j k

E hμ θ θ
−

= =

= ∑∑θ , (4.2.1) 

where 

 ( ) ( )( )2

5

( ) ( ) 3 ( ) ( )
, j j k k jk j j jk k k jk

jk j k

jk

h
θ θ θ θ

θ θ
⋅ − ⋅ ⋅

=
S S r S r S r

r
 (4.2.2) 

with jk j k= −r r r  and N  is the total number of dipoles. Although this model is 
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intensely simplified, it still contains enormous degrees of freedom and is impossible to 

evaluate the FEL.  Since we are interested in a motion of the system at low 

temperature, we may reduce the degrees of freedom by choosing a small subset of 

states near the lowest energy configuration.  We thus construct a further simplified 

model with the following two steps.  We first restrict each dipole to point only four 

directions (2 1) / 4j nθ π= − ( 1 4n = ∼ ) and find the energy minimum configuration 

denoted by { }0 0
jθ=θ  by generating all configurations of θ (dotted arrows in Fig. 

4.1).  Using this minimum configuration, we then construct a two-state dipolar model 

by adding the two values of the angular shifts / 8jδθ π= ±  to each 0
jθ  as depicted by 

the solid arrows in Fig. 4.1.  This model simulates the librational fluctuations around 

the energy minimum.  We set / 8jδθ π= ±  to have a discredited expression of a 

macroscopic variable (i.e., an order parameter or a reaction coordinate) for the FEL. 

This model may be oversimplified to study a real system, but it should be sufficient to 

grasp a relation between the FEL and dynamics. 

From Eqs. (4.2.1) and (4.2.2), the total energy of our model is written 

as ( )0E δ+θ θ , where the set of angular shifts is defined by { }jδ δθ=θ . We set 

1.85μ =  and 1L =  in the units of Debye and 2.1A
°

, respectively, as the typical of 

dipolar liquid.  The characteristic energy is then evaluated as 201.08 10 JU −Δ = × , 

which is about ( )2.5 Bk T  at room temperature. The displacements from the lattice 

points obey a Gaussian distribution with average 0jδ =a  and standard deviation 
2
jδa . We chose two parameters for 4 4×  lattice corresponding to the structural 

disorder case 2 0.1jδ =a  and the regular lattice case 2 0jδ =a . We utilize the open 

boundary condition to avoid undesired effects that arise from a treatment of boundary. 

To study FEL by means of experiments, we depict the FEL as the function of an 

experimental observable.  Here, the reaction coordinate or the order parameter is 

chosen to be the total polarization defined by 

 ( )0

1 1
sin

N N
y
j j j

j j
P μ μ θ δθ

= =

= = +∑ ∑ , (4.2.3) 

where y
jμ  is the thj dipole moment for the vertical direction.  Since 0

jθ  can take 
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only (2 1) / 4j nθ π= − and we chose / 8jδθ π= ± , P  takes discrete 1N +  values for 

N  dipolar system with the constant step size ( )2 sin / 8P μ πΔ = . If N+ ( )N−  is 

the number of dipoles whose 0
jθ  satisfies 00 jθ π≤ < ( )0 2jπ θ π≤ < , the minimum 

and maximum values of the reaction coordinate become 

( ) ( )( )min sin / 8 sin 3 / 8P N Nμ π π+ −= −  and ( ) ( )( )max sin 3 / 8 sin / 8P N Nμ π π+ −= − , 

respectively.  For our model, N+  and N−  satisfy / 2N N N+ −= =  because the 

systems are symmetric with the exclusion of the small deviated positions of dipoles.  

The values of P  is expressed by introducing an integer k  which meets 

/ 2 / 2N k N− ≤ ≤  in a symmetric form as  

 ( ) 2 sin
8

P k k πμ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (4.2.4) 

The FEL is then given by 

 ( )
2

( ),
1

( ) ln exp
N

i

i
B P k P

i B

E
F P k k T

k T
δ

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑   (4.2.5) 

where iP  and iE  are the polarization and energy for the i th state, respectively, and 

,a bδ  is the Kronecker’s delta.  We denote the polarization for the i th state by iP  

and the reaction coordinate specified by an integer k  by ( )P k . 
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Figure 4.1: The Schematic view of a model for representing dipolar molecules. Dipoles 

are located on the distorted lattice sites and interact through the dipole-dipole 

interactions. Each dipole is allowed to point two directions (solid arrows) to represents 

the librational fluctuations. The dotted arrows represent the centers of librational 

motions, which are obtained from the energy minimum of the four states dipoles 

model. 
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4.3 Dynamics and Observable of Dipolar System 
A. Master Equations for Single and Single-Double Flips 
Dynamics 

First we should point out that our system is not kinetic, since our Hamiltonian is 

specified by the configurations of the discretized dipoles and does not have a kinetic 

term.  To yield the time-evolution, we assume a stochastic dynamics among the 

dipole states that brings the system to be in the thermal equilibrium state at t →∞ .  

We do not use kinetic Monte Carlo (MC) approach introduced by Glauber [43], since 

we must study dynamics at very low temperature, where the MC sampling does not 

work properly.  Taking an advantage of a small system, we use the master equation 

approach for all 2N  dipolar states.  Since the master equation employs a probability 

distribution function and does not rely on the sampling procedure, we can numerically 

calculate the time-evolution of the system at the same CPU at any temperatures. We 

ordered 2N  states as 1 2 2NE E E< < <" , where kE  is the interaction energy 

evaluated from Eq.(4.2.1) for the kth lowest energy state 0
kθ θδ+ . The polarization of 

kδθ  is evaluated from Eq.(4.2.3) and is expressed as kP . We denote the probability 

distribution for all states by vector ( ) 1 2 2
( ), ( ), ( )N

t
t t t tρ ρ ρ ρ⎡ ⎤= ⎣ ⎦

G
" .  This master 

equation is a rate equation for the probability distributions and is expressed as  

 ( ) ( )t t
t
ρ ρ∂

= −
∂

L
G G

, (4.3.1) 

where −L  is the transition matrix whose element ( )kl−L  describes the transition 

probability between the lth and kth states.  We introduce the polarization vector given 

by ( )( ) P k
k

P P k D= ∑
G G

, where 

 
1 2 3 2

( ) ( ), ( ), ( ), ( ),, , , ,
N

t

P k P k P P k P P k P P k PD δ δ δ δ⎡ ⎤= ⎣ ⎦
G

" . (4.3.2) 

The operator ( )P kD
G

 allows us to calculate the probability to have the polarization 

( )P k  from the probability distribution function ( )tρ
G

.  The total polarization is then 

expressed as 

 ( ) ( )P t P tρ= ⋅
G G

, (4.3.3) 
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where the dot represents the inner product. 

As was mentioned in Chapter 1, the FEL may be the same for the same system 

with different dynamics.  To illustrate this point, we consider two cases of −L  that 

can be specified by the connectivity coefficient of dipolar states.  Consider the qth 

lowest energy state qδθ .  Suppose if we flip a dipole and energy becomes pE , the 

connectivity coefficients are specified as ( )1
, 1p qC = . Letting be unreachable p ′ th states 

from qth state with a single dipole flipping, the coefficients satisfy ( )1
, 0p qC ′ =  for the 

single flip case.  If the state is in the qth lowest energy state qδθ  and if the energy 

becomes pE  with a two-dipolar flipping, we set ( )2
, 1p qC =  and ( )2

', 0p qC =  for 

unreachable p ′ th state for the double flip case.  The connectivity coefficients for n 

flipping of dipoles ( )
,
n

p qC  can also be defined accordingly.  In Monte Carlo approach, 

n=1 corresponds the single flip sampling per one MC step yielding the Glauber 

dynamics, whereas n=2 corresponds to the double flip sampling.  Since −L  has to 

satisfy the detailed balance condition, transition matrixes for n flipping dynamics have 

to be in the form of 

 
( ) ( )

( )

, ,( )
,

,

exp / for 
( )

for 

n
i j i j B i jn

i j n
i j i j

C E k T E E

C E E

⎧ −Δ >⎪− = ⎨
<⎪⎩

L
� � �

� �
, (4.3.4) 

where ,i jEΔ�  is the energy difference between i th and j th states, i.e. 

,i j i jE E EΔ = −� � � .  Here, we consider the linear combination of n=1 and 2 flippings 

defined by 

 (1) (2)L L Lα β− = − −  (4.3.5) 

to discuss the different dynamics by a choice of the constants α  andβ . 

 

B. Laser-System Interactions 
To calculate response functions, we need to implement an external perturbation 

based on physical considerations, since our model is not kinetic system. When we 

apply an external field B to the system, the total energy of the system increases as 

jP B−  for the j th state.  If B is small enough, we can expand the transition matrix 
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for the total Hamiltonian in terms of B.  For the single flip case n=1, this is written as 

 ( ) ( )( ) ( )1t B t
t
ρ ρ∂

= − +
∂

L μG G , (4.3.6) 

where −μ  is the dipolar interaction whose elements are given by 

 
( )1

, ,
,

( ) / for 
0 for 

i j i j B
i j

P k T i j
i j

⎧ − Δ >⎪= ⎨
<⎪⎩

Lμ  (4.3.7) 

with ,i j i jP P PΔ = − . As discussed for −L , we may define the excitation for any 

flipping number n.  As we need to excite the system in the same manner to study the 

effects of different time-evolution, we consider the single flip excitation case only.  

 

C. First- and Third-Order Response Functions 
The optical observable of the system is expressed as the response functions of 

dipole moment or polarization.[81] For the first-order linear and third-order 

two-dimensional (2D) infrared, far infrared and THz spectroscopies, the signals are 

expressed in terms of a dipole operator μ̂  as ( ){ }1 1
ˆ ˆˆ ˆ( ) ( ) /eqS t i tr G tμ μ ρ×= =  and 

( ){ }3 3
3 1 3 1

ˆ ˆ ˆˆ ˆ ˆ ˆ( ,0, ) ( ) ( ) /eqS t t i tr G t G tμ μ μ μ ρ× × ×⎡ ⎤= ⎣ ⎦ =  [86], where ˆeqρ  is the equilibrium 

distribution and we define ˆ ˆˆ ˆ/ [ , ] /iA B i A B× ≡= =  in the quantal case or 
ˆ ˆˆ ˆ/ { , }iA B A B× ≡=  in the classical case.[122] By using the quantal or classical Liouville 

operator of the system L̂ , the time-evolution operator is expressed as ˆ ˆ ˆ( ) e LtG t A A−≡ .  

For the master equation, the response functions are expressed as 

 ( ) ( )1 1( ) ( ),
k

S t P k H P k t=∑ μ , (4.3.8) 

and 

 ( )3 1 3 1( ,0, ) ( ) ( ), , 0,
k

S t t P k H P k t t=∑ μμμ , (4.3.9) 

where 

 ( )( ) ( ) [ ]1 1, exp eqP kH P k t D t ρ= −μ L μ
G G , (4.3.10) 

and 
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 ( )( ) ( ) [ ] [ ]3 1 3 1, ,0, exp exp eqP kH P k t t D t t ρ= ⋅ − −μμμ L μμ L μ
G G . (4.3.11) 

The vector eqρ
G

 represents the thermal equilibrium distribution whose component is 

defined by 

 ( ) ( )exp / /eq i Bi
E k T Zρ = −

G
, (4.3.12) 

in which Z  is the partition function.  Analogues to a quantal case, the right-hand 

side of Eqs.(4.3.10) and (4.3.11) can be read from the right to left as follows. The total 

system is initially in the equilibrium state eqρ
G

. The initial state is then modified by the 

first laser pulses via the dipole operator as μ  at 0t =  and is propagated for time 1t  

by [ ]1exp t−L . The probability distribution functions is now given by [ ]1exp eqt ρ−L μ G .  

The linear absorption (1D) signal is the expectation value of polarization given by 

( )1( ) ( ),
k
P k H P k t∑ μ . In the third-order 2D measurements, after the first excitation 

and time evolution for 1t , the system is further excited by the second and third dipole 

interactions expressed as μμ . After these excitations, the system is propagated for the 

time period 3t  by [ ]3exp t−L  as [ ] [ ]3 1exp exp eqt t ρ− −L μμ L μ G  and, finally, the 

expectation value of the dipole moment at 1 3t t+  is obtained by 

( )3 1( ) ( ), , 0,
k
P k H P k t t∑ μμμ . Using the above procedure, we can calculate 1D and 2D 

signals from master equation approach.   

 

 

4.4 Free Energy Landscapes 
In Fig. 4.2, we illustrate the free energy landscapes (FELs) in the case of 4 4×  

distorted and regular lattice at various temperatures: (a) 10T = , 2 0.1jδ =a ; (b) 

1T = , 2 0.1jδ =a ; (c) 0.1T =  2 0.1jδ =a ; (d) 10T = , 2 0jδ =a ; (e) 1T = , 
2 0jδ =a ; and (f) 0.1T = , 2 0jδ =a . Here and after, we set 1Bk = . We analyze the 

temperature dependence of the heat capacity and find a sharp peak 1cT ≈  that are 

corresponded to the freezing temperature of dipolar librational motions. Therefore the 

cases for (c) and (f) are in the glassy state. These landscapes are directly calculated 
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from Eq. (4.2.5) by generating all possible dipolar states numerically.  

To elucidate a profile for each of FELs, we introduce the density of states as the 

function of ( )P k , and E  expressed as 

 ( )( ) ( )( ) ( )( ), ,n P k E dE P k g P k E dE= Ω  (4.4.1) 

where ( )( ),g P k E  is the distribution of the density of state between E  and E dE+  

for fixed ( )P k  and ( )( )P kΩ  is the total number of states for ( )P k  defined by 

 ( )( ) ( ) ( )
/ 2

/ 2 / 2
!

/ 2 ! / 2 !

N

N r N r k
r k

NP k C C
N k N k−

=

Ω = =
+ −∑ . (4.4.2) 

From Eq. (4.4.1), the FEL given by Eq. (4.2.5) is evaluated as 

 ( )( ) ( )( ) ( ) ( )( )*ln , exp /B BF P k k T dEg P k E E k T TS P k= − − −∫ , (4.4.3) 

where ( )( ) ( )( )* lnBS P k k P k= Ω  is the configuration entropy given by 

 ( )( )* 1 1 1 1ln ln
2 2 2 2B

k k k k
S P k k N

N N N N
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− + + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

� . (4.4.4) 

If we assume the energy distribution ( )( ),g P k E  obeys Gaussian form with the 

central energy ( )( )E P k  and the standard deviation ( )( )E P kΔ , Eq. (4.4.3) is 

evaluated as 

 ( )( ) ( )( ) ( )( ) ( )( )
2

*

2 B

E P k
F P k E P k TS P k

k T
Δ

= − − . (4.4.5) 

The profile of the FEL is governed by the configuration entropy ( )( )*S P k  at high 

temperature.  By expanding ( )( ) ( )( )*F P k TS P k≈ −  in power of ( )P k  up to 

the fourth order, we have  

 ( ) 2 4

2 4

2 4ln 2
3B

F P P Pk T
N P N P N

⎡ ⎤⎛ ⎞ ⎛ ⎞≈ − − −⎢ ⎥⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (4.4.6) 

where ( )2 sin / 8P μ πΔ = . Analogues to the electron transfer case [26], this result 

indicates that the profile of the FELs is parabolic for the small P, while an additional 

quartic contribution to the FELs is found for the large P. Since the quartic term arises 
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from ( )( )*TS P k , this contribution is attributed to the entorpic origin.  In the case of 

Figs. 4.2(a) and 4.2(d), the FEL is looks parabolic in the small region of P.   

When the temperature drops, the simulated FELs are no longer smooth and a 

remarkable difference appears between the distorted case (Fig. 4.2(c)) and the regular 

case (Fig. 4.2(f)).  This feature can be explained from the distribution of states as a 

function of the polarization P  and the energy E  as illustrated in Fig. 4.3.  For the 

regular case, the states are highly degenerated (the close circles in Fig. 4.3) due to the 

symmetry of the system, while for the distorted case, the states are not degenerated and 

irregularly distributed (the open circles in Fig. 4.3) because of the frustrated 

interactions among the dipoles. Since the FELs are determined by the lowest energy 

states at very low temperature due the Boltzmann factor in Eq. (4.2.5), the FEL of the 

distorted lattice exhibits prominent irregular profiles. 
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Figure 4.2: The FELs as the function of the polarization P  in the case of 4 4×  

distorted and regular lattices at various temperatures: (a) 10T = , 2 0.1jδ =a ; (b) 

1T = , 2 0.1jδ =a ; (c) 0.1T =  2 0.1jδ =a ; (d) 10T = , 2 0jδ =a ; (e) 1T = , 
2 0jδ =a ; and (f) 0.1T = , 2 0jδ =a . 
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Figure 4.3: The schematic pictures of the distribution of states as a function of the 

polarization P  and energy E . The solid line represents FELs for (a) a regular lattice 

case and (b) a distorted lattice case. The states are highly degenerated due to the 

symmetry of the system shown as the close circle, while the states are degenerated and 

irregularly distributed shown as the open circle in (b). As a result, the FEL for the 

distorted case exhibits prominent irregular profiles. 
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4.5 Optical Responses 
A. One-Dimensional Signals 

Following the procedures explained in Sec. 4.3.C, we have calculated the first- 

and third-order response functions and plotted them as the signals in one- and 

two-dimensional spectroscopies.  In Figs. 4.4 (a)-(f) , the linear absorption (1D) 

signal ( )1S t  for (i) the single-flip case, 1α =  and 0β =  (solid line), and (ii) the 

single-double mixed flips case, 0.5α =  and 1β =  (dashed line), are plotted for the 

same sets of parameters 2
jδa  and T  used in Figs. 4.2 (a)-(f). Although the 

relaxation rates are different in each case, we find that solid and dashed lines in Figs.  

4.4(a) and 4.4(d) at the high temperature case are well fitted by a single exponential 

function, whereas the solid and dashed lines in Figs. 4.4(b) and 4.4(e) are fitted by the 

sum of exponential functions at the intermediate temperature. At the low temperature, 

the solid lines are single exponential function, while the dashed lines are represented 

by the sum of exponential functions in Figs. 4.4(c) and 4.4(f). 

To investigate these features, we consider a relaxation mode analysis, which 

utilizes the eigenvalues and eigenmodes of the master equation for a system with 

complex interactions.[123][124] In this analysis, the time-relaxation of a two-body 

correlation function is characterized by a sum of exponential functions with their decay 

rates defined by the eigenvalues of the master equation.  If the number of the 

eigenmodes involved in the system is enormous and the eigenvalues are well 

distributed in the energy space due to the complex interactions in the system, the signal 

decays non-exponentially as shown in the case of a two-dimensional ± Ising model at 

the critical point. Despite the complexity of the interactions between the dipoles, 

present results decay more or less exponentially regardless of the temperatures. This is 

because the excitation induced by laser pulses is highly symmetrical against to P and 

therefore the laser interaction excites only a few modes which decay exponentially. 

To see this point more closely, we depict ( )1,H P tμ  given in Eq.(4.3.10) which 

represents the deviation of the distribution from the equilibrium state after the laser 

interaction μ  at time 0t =  for given P . Figures 4.5 (a)-(f) illustrate the change of 
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( )1,H P tμ  in time for distorted cases and regular lattice cases at different temperatures 

for the single flip dynamics in the same order of Figs. 4.4 (a)-(f). In each figure, the 

line above the P  axis shows the corresponding FEL.  Here, we plot the single flip 

case only, since the profiles of ( )1,H P tμ  for different temperatures and 

configurations in the single flip and single-double flips cases are approximately 

analogues, if we normalized the time scale of each figures by their relaxation rates 

estimated from Fig. 4.4. As all figures in Fig. 4.5 indicate, the primary cause of the 

signal relaxation is not from the movement of ( )1,H P tμ  toward the 0P =  point but 

from the decrease of ( )1,H P tμ  for the fixed position of P. Since ( )1,H P tμ  decays 

monotonically with keeping their profiles at the high temperature and very low 

temperature as shown in Figs. 4.5 (a) and (d) and Figs. (c) and (f), respectively, we 

may conclude that the excited states are composed of either the single eigenmode or 

the eigenmodes that have similar eigenvalues. At the intermediate temperature in Figs. 

4.5(b) and 4.5(e), the profile of ( )1,H P tμ  slightly change as time goes indicating 

those excite states are composed of the eigenmodes with different eigenvalues. 
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Figure 4.4: The linear absorption (1D) signals ( )1S t  for (i) single flip case, 1α =  

and 0β =  (solid line), and (ii) single-double mixed flips case, 0.5α =  and 1β =  

(dashed line), are plotted for the same sets of parameters 2
jδa  and T  used in Fig. 

4.2. The intensities of the signals are normalized by their initial values. 
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Figure 4.5: The time evolution of ( )1,H P tμ  for the single-flip dynamics for the 

distorted cases (a)-(c), and the regular cases (d)-(f), at different temperatures in the 

same order of Fig. 4.2.  The line above the P  axis shows the corresponding FEL. 
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B. Two-Dimensional Signals 
While we couldn’t observe any features specific to the FELs from 1D 

measurements, we have investigated their third order response function ( )3 1,0,S t t . 

We plot contour maps of 2D signals defined by ( )3 1,0,S t t  for the distorted and 

regular lattice cases at different temperatures in the same order as in Fig. 4.2. Figure 

4.6 is for single-flip ( 1, 0α β= = ), while Fig. 4.7 is for single-double mixed flips 

( 0.5, 1.0α β= = ) dynamics. Compared with the 1D case, 2D spectroscopy is much 

more sensitive to the difference of temperatures, configurations of dipoles, and 

dynamics. As can be seen in Figs. 4.2(a) and 4.2(d), the FELs at the high temperature 

are similar due to the entropic contributions. The corresponding 2D signals in Figs. 4.6 

(a) and 4.6(d) or Figs. 4.7(a) and 4.7(d) show a similar 2D profile, if we normalize the 

time scales by the relaxation times estimated from Fig. 4.4. First we should notice that 

if the dipole element of the laser interaction is a linear function of the system 

polarization P, the 2D signals will be vanished for a harmonic potential due to the 

destructive interference of the multiple laser excitations.[86]  Although there is always 

a quartic anharmonicity in the FELs as illustrated in Eq. (4.4.6), its contribution is too 

small to have the signals comparable to the calculated results. In the present case, it is 

the nonlinearity that causes 2D signals for the high temperature parabolic potential. 

Based upon the profile analysis between the initial equilibrium distribution and the 

laser excited distribution depicted in Fig. 4.5, we have found the effective dipole 

element in the laser interactions is not linear but linear with the cubic function 

expressed as 3P Pε− , where ε  is the constant in the order of 210− . The nonlinear 

contribution arises because we have constructed the dipole operator non-kinetic way 

by expanding the Liouville operator with the external interaction defined with the 

Boltzmann factors. 

Regardless of the form of the laser interaction, the decays of signal profiles reflect 

the system dynamics, since the time-evolutions of the system between the excitations 

are governed by the system Liouvillian only. Thus, the 2D profiles in the high 

temperature case decay monotonically as the function of 1t  and 2t . For the 
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intermediate and lower temperature cases as shown in Figs. 4.2(b), 4.2(c), 4.2(e) and 

4.2(f), the anharmonicity of potential is strong and the primary cause of the signals is 

the anharmonicity of the FELs rather than the nonlinearly of dipole. While the signals 

for the distorted and regular cases exhibit similar profiles at high temperature as shown 

in Figs. 4.6(a) and (d) and in Figs. 4.7(a) and (d), they show clear differences at low 

temperature as illustrated in Figs. 4.6(c) and (f) and in Fig. 4.7(c) and (f). These signals 

seem to reflect the differences of the FEL profiles presented in Fig. 4.2, indicating a 

possibility to detect a profile of FEL. The sensitivity of 2D spectroscopy also suggests 

a possibility to detect the difference of dynamics on the same FELs, since the profiles 

depicted in Figs. 4.6 and 4.7 are different if the dynamics is different even it is 

governed by the same FELs.  

To see underlying dynamics on 2D signals, we plot the distribution given in Eq. 

(4.3.11). Figures 4.8(a)-(f) illustrate ( )3 1, , 0,H P t tμμμ  with 1 0t =  in the same order 

as Figs. 4.2(a)-(f) for the single flip dynamics. Although ( )3 1, , 0,H P t tμμμ  is not an 

observable, it is as sensitive as 2D signals for the difference of dynamics. Thus, 

( )3 1, , 0,H P t tμμμ  for the single-double flips case exhibits some differences from the 

single flip case presented in Fig. 4.8 unlike the case of 1D spectroscopy.  Since a role 

of FEL can be sufficiently explained from the single flip case, here we display the 

single flip case only. 

For the high temperature cases shown in Figs. 4.8(a) and (d), the distribution 

profiles decay monotonically reflecting the monotonic decays of signals observed in 

Figs. 4.6(a) and (d). Similar behaviors are observed in Figs. 4.7(a) and (d). The 

differences between Figs. 4.6(a) and (d) and 4.7(a) and (d) are their time scales which 

can be adjusted by the relaxation time estimated from Fig. 4.4(a) and (d). While the 

FELs of distorted and regular cases appear similar at high-temperature due to the 

entropic contribution, they become different at low temperature, which reflects the 

differences in the system energetics. These differences in FELs seem to be detected by 

2D spectroscopy as illustrated in Figs. 4.6(b) and (e) as well as 4.7(b) and (e). The 

relaxations of distributions presented in Figs. 4.8(b) and 4.8(e) are no longer 
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monotonic, because the multiple excitations involved in 2D spectroscopies excite 

various modes with different relaxation constants. Since the role of relaxation depends 

on the time sequence 1t  and 3t , the 2D spectroscopy can provide more information 

than 1D spectroscopy. 

When the temperature becomes very low, a remarkable difference appears 

between the distorted and regular cases. This difference can be easily explained by 

comparing the time-evolution of ( )3 1, , 0,H P t tμμμ  as shown in Figs. 4.8(c) and (f).  

The elongation of the peak in the 3t  directed in Fig. 4.6 (f) can be attributed to the 

trapping of the distribution in the local minima around / 0.25P N =±  as illustrated in 

Fig. 4.8(f). We also have observed the trapping of ( )3 1, , 0,H P t tμμμ  in the 

single-double mixed flips case (not shown), but the trapped distribution decays more 

quickly than the single flip case and the elongated contribution in Fig. 4.7(f) is much 

smaller than that in Fig. 4.6(f). Since other 2D signals do not show the elongation, this 

implies the local minimum of the FEL may be detected as the elongated peak in the 3t  

direction in the 2D IR spectroscopy. 
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Figure 4.6: The contour maps of the 2D signals for the single-flip dynamics.  The 

intensity of each plot is normalized by its maximum or minimum value. 
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Figure 4.7: The contour maps of the 2D signals for the single-double mixed flips 

dynamics ( )0.5, 1α β= = . The intensity of each plot is normalized by its maximum 

or minimum value.  The insets of Figs. 4.7(a) and (d) show ( )3 1,0,S t t  by using the 

magnified scale. 

 

 



 

 79 

 

 

t3

t3

t3

t3

t3

(a)

(b)

(c)

(d)

(e)

(f)

Distorted lattice Regular lattice

T = 0 1. T = 0 1.

T =1 T =1

T =10 T =10

t3

× −10 3

P N/

P N/

P N/

P N/

P N/

P N/

 0
 1

 2
 3

 4
 5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
−

 0
 1

 2
 3

 4
 5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-4

-3

-2

-1

 0

 1

 2

 3
× −10 1

 0
 1

 2
 3

 4
 5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-6

-4

-2

 0

 2

 4

 6
× −10 9

 0
 1

 2
 3

 4
 5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
× −10 3

 0
 1

 2
 3

 4
 5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-6

-4

-2

 0

 2

 4

 6
× −10 1

 0
 1

 2
 3

 4
 5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-4

-3

-2

-1

 0

 1

 2

 3

 4
× −10 7

H
P

t
μμ

μ
,

,
,

3
0

0
(

)
H

P
t

μμ
μ

,
,

,
3

0
0

(
)

H
P

t
μμ

μ
,

,
,

3
0

0
(

)
H

P
t

μμ
μ

,
,

,
3

0
0

(
)

 

Figure 4.8: The time evolution of ( )3 1, ,0,H P t tμμμ  for the single-flip dynamics with 

1 0t =  for the distorted cases (a)-(c), and the regular cases (d)-(f), at different 

temperatures in the same order of Figs. 4.2(a)-(f). The line above the P  axis shows 

the corresponding FEL. 
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4.6 Smoluchowski Equation Approach 
To discuss dynamical behaviors of FELs, a time-dependent Ginzburg-Landau 

(TDGL) equation approach [11][12][13] and Smoluchowski equation approach 

[125][126] are often used by assuming a driving force of macroscopic coordinate X  

which is proportional to the gradient of the free energy ( ) /dF X dX . For a simple 

model of electron transfer (ET) problem, a relationship between the master equation 

and the Smoluchowski equation approaches has been clarified for the high temperature 

case [61], but the validity of such equation of motion approaches for the low 

temperature case has not been examined. Here, we examined the applicability of the 

Smoluchowski equation approach by calculating 1D and 2D signals for the FELs given 

in Figs. 4.2(a)-(f) and compared with the microscopically calculated 1D and 2D signals 

presented in Sec. 4.5.   

For the distribution ( ),H P t , the Smoluchowski equation is expressed as  

 ( ) ( ), ,SH P t H P t
t
∂

= −
∂

L . (4.6.1) 

The Liouville operator is given by 

  
( ) 2

2

1
S

B

F P
D

k T P P P
⎡ ⎤⎛ ⎞∂∂ ∂

− = +⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
L , (4.6.2) 

where D is the diffusion constant. The Smoluchowski equation describes the same 

dynamics as the overdamped limit of the Langevin dynamics with the white noise 

fluctuations.  In the Smoluchowski case, the dynamics is described as the probability 

diffusion on the potential ( )F P . As in the case of ET problem, one can relate to the 

microscopic master equation approach and phenomenological Smoluchowski equation 

approach if the system is in the high temperature case. In Appendix B, we deduce the 

Smoluchowski equation for the single flip and the single-double flips master equations 

at the high temperature. Thus, in the high temperature case, we can estimate the 

coefficients in Eq.(4.6.2) directly from the master equation. Note that, as shown in 

Appendix B, the single flip and single-double flips dynamics of the master equation 

approach can be treated uniformly in the Smoluchowski equation approach as the 
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choice of diffusion parameters. Since the phenomenological features do not depend on 

the diffusion parameters, here discuss the single flip case only to examine the validity 

of Smoluchowski equation. 

To calculate 1D and 2D signals, we need to define the dipole operator. As 

mentioned in Sec. 4.5, the dipole element introduced in the master equation approach 

contains the cubic polarization term. We consider the free energy with the electric 

perturbation expressed as ( ) ( )3F P B P Pε− + , where B is a weak electric field and a 

small constant. When we expand the free energy up to the first order by the 

perturbation, we have the dipole operator in the form 

 26 3s
B

D P P
k T P P

ε⎡ ⎤∂ ∂⎛ ⎞= − + +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
μ , (4.6.3) 

where we evaluate 0.03ε=−  from the master equation approach. Replacing the 

Liouvillian and dipole operator in Eqs.(4.3.10) and (4.3.11) by those in Eqs.(4.6.2) and 

(4.6.3), we can calculate the 1D and 2D signals from the Smoluchowski approach.  

Note that the equilibrium state in the Smoluchowski approach is given by 

( )( )exp /eq BF P k T∝ −ρ . In Figs. 4.9(a)-(c), we plot the 1D signals calculated from 

the Smoluchowski approach for the FELs given in Figs. 4.2(a)-(f). In each figure, the 

solid and dashed lines represent the distorted and regular lattice cases, respectively.  

The nonlinearlity of the dipole element does not play a major role in the 1D case, since 

it gives rise to a minor collection of the signals. We adjust the diffusion constants to fit 

the results from the single flip master equation dynamics. For the high temperature 

case, we use 7.14D =  for the distorted and regular lattices which roughly agrees 

with the value reduced from the master equation.  In the high temperature case in 

Fig.4.9(a) where the FEL profile becomes parabolic, we can analytically evaluate the 

1D signals from Smoluchowski approach as described in Appendix C and the single 

exponential decay of the signals, which was also observed in the master equation 

approach, is explained as the relaxation of the harmonic mode. For the intermediate 

and low temperature cases shown in Figs. 4.9(b) 1T =  and 4.9(c) 0.1T = , 

respectively, the relaxation constants for the distorted and regular lattices are evaluated 
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as (b) 1.67D = (solid line) and 2.50D = (dashed line) and (c) 0.010D = (solid line) 

and 0.028D =  (dashed line). While all curves in Fig. 4.9(b) can be fitted by a simple 

exponential function, the curves in Fig. 4.9(c) are expressed by the sum of exponential 

functions, which are different from the microscopic results given in Figs. 4.4(b), (c), 

(e) and (f). 

The 2D signals calculated from the Smoluchowski equation at different 

temperatures are presented in Figs. 4.10(a)-(f). As mentioned in Sec. 4.5, the 2D 

signals in the high temperature case arise from the nonlinearity of the dipole elements. 

If we calculate the 2D signals with setting 0ε =  for a harmonic potential with quartic 

anharmonicity using the Smoluchowski equation, the signals become negative and give 

a different 2D profile as shown in Fig. 4.11. This fact supports the form of dipole given 

in Eq.(4.6.3).  While the Smoluchowski equation well reproduces the 1D signals at all 

temperatures and the 2D signals at high temperature calculated from the master 

equation, it cannot simulate the 2D signals in the low temperature cases as shown in 

Figs. 4.10 (b), (c), (e) and 4.10(f). For these figures, we have used the same relaxation 

constant D as used for  the dashed and solid lines of Figs. 4.9(a)-(c). Although we 

have changed D as well as the nonlinearlity of dipole ε , we could not reproduce 

profiles similar to those found in Figs. 4.6. This result indicates that the applicability of 

the Smoluchowski equation is limited to the high temperature case, where the FEL 

profile is parabolic.  We should address that this limitation becomes prominent due to 

the sensitivity of 2D spectroscopy. 
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Figure 4.9: The 1D signals calculated from the Smoluchowski approach for the FELs 

given in Fig. 4.2(a)-(f): (a) 10T =  for the high temperature case, (b) 1T = , for the 

middle temperature case and 0.1T =  for the low temperature case. In each figure, the 

solid and dotted lines represent the distorted and regular lattice cases, respectively. 
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Figure 4.10: The contour maps of the 2D signals calculated from the Smoluchowski 

equation with the nonlinear excitation for the distorted cases (a)-(c), and the regular 

lattice cases (d)-(f), at different temperatures in the same order of Figs 4.2(a)-(f). The 

intensity of each plot is normalized by its maximum. 
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Figure 4.11: The contour map of the 2D signal calculated from the Smoluchowski 

equation without the nonlinear excitation ( 0ε = ) for the high temperature case. The 

intensity of the plot is normalized by its minimum. 
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4.7 Conclusion 
Having employed a simple model for the regular and the distorted dipolar systems, 

we are able to have the exact FEL and collective dynamics of the system at any 

temperatures, which allows us to explore a possibility to obtain information on the FEL 

by spectroscopic means. The evaluated FEL exhibits the parabolic shape at high 

temperature whereas it shows a bumpy profile with some minima at low temperature, 

where the motion of dipoles is frozen. From the master equation approach, we 

calculated the 1D and 2D singles for single flip and single-double flips dynamics.  

While the 1D signals were characterized by the featureless exponential or sum of 

exponential relaxation signals regardless of the FEL profiles, 2D spectra showed 

distinct differences for different FEL profiles.  The local minima of the FEL were 

detected as the elongation of 2D signals in the 3t  direction. This indicates that 2D 

spectroscopy may be a useful tool to analyze FEL profile expressed as the function of 

system polarization. 

To examine the validity of Smoluchowski equation, we also have calculated the 

1D and 2D spectra using the microscopically calculated FELs. For the high 

temperature case, the dynamics described by the master equation and Smoluchowski 

equation was essentially the same for the large system size thus their calculated 1D and 

2D signals were the same. However, in the middle and low temperature cases, these 

signals were different, which indicates that Smoluchowski equation might not be 

accurate to describe the dynamics for the system with nonparabolic FELs.   

Finally, we should address the limitation of the present analysis. To have the 

accurate FEL with the decreasing the degrees of freedom, we had to discretize the 

configuration of dipoles, which made the employment of kinetic dynamics impossible. 

We thus employ the stochastic dynamics using the master equation. To make our 

statement more concrete, we have to compare the present results with the kinetic ones. 

For instance, although the Smoluchowski equation reproduces the stochastic results 

only in the high temperature case, our statement for dynamics on the FEL may change 

if we consider the kinetic system. The model dependence as well as the size 
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dependence of the present results has not been explored, which is essential to discuss a 

real system. 
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Chapter 5 
Conclusion 
 

We have analyzed the free energy landscapes (FELs) for three types of models 

representing ionic solvation, electron transfer (ET) and dipolar crystal systems in terms 

of statistical and dynamical aspects. In general, the FEL is a useful concept for 

explaining the static and dynamic behaviors of systems since it corresponds to the 

probability of achieving a given state, and is well characterized by a simple functional 

form even with complex interactions among atoms and molecules at high temperature. 

One of our research interests is the structural change of the FEL depending on the 

physical conditions such as temperature. For obtaining reasonable FELs, we introduced 

models to decrease the degree of freedom and employed suitable calculation method, 

Wang-Landau method.  

The Chapter 2, a simulation model for ionic solvation in a polar solvent is 

prepared, in which a central charge is surrounded by dipolar molecules posted on the 

distorted lattice sites with simple rotational dynamics. The density of states is 

calculated by applying the Wang-Landau algorithm to both the energy and polarization 

states. The FELs of solvent molecules as the function of polarization are depicted to 

explore the competition between the thermal fluctuation and solvation energy. Without 

the central charge, for temperatures higher than the energy scale of the dipole-dipole 

interactions, the energy landscape for the small polarization region exhibits a parabolic 

shape as predicted by Marcus for ET reaction, while there is an additional quartic 

contribution to the landscape for the large polarization region. When the temperature 

drops, the simulated FELs are no longer smooth due to the presence of multiple local 

minima arising from the frustrated interactions among the dipoles. The parabolic 

contribution becomes negligible and the energy landscape becomes quartic in shape. If 

the central charge is strong, the energy landscape exhibits an asymmetric profile due to 

the contributions of linear and cubic terms that arise from the charge-dipole 

interactions. 
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   In Chapter 3, a model to simulate electron transfer (ET) reaction is prepared with 

a solute dipole surrounded by dipolar molecules with simple rotational dynamics 

posted on the three-dimensional distorted lattice sites. The interaction energy between 

the solute and solvent dipoles as a reaction coordinate is adopted and FELs are 

calculated by generating all possible states for a 26-dipolar-system and by employing 

Wang-Landau sampling algorithm for a 92-dipolar-system. For temperatures higher 

than the energy scale of dipole-dipole interactions, the FELs for the small reaction 

coordinate region have the quadratic shape as predicted by Marcus, whereas for the 

large reaction coordinate region, the shape of the landscapes is non-quadratic. When 

the temperature drops, small notched structures appear on the free energy profiles 

because of the frustrated interactions among the dipoles. The formation of notched 

structure is analyzed with statistical approach and it is shown that the amplitude of 

notched structure depend upon the segment size of the reaction coordinate and is 

characterized by the interaction energy among the dipoles. Using simulated FELs, we 

calculate the reaction rates as a function of the energy gap for various temperatures. At 

high temperatures, the reactions rates follow a bell shaped (inverted parabolic) energy 

gap law in the small energy gap regions, while the bell shape becomes steeper than the 

parabolic shape in a large energy gap regions due to the FEL’s non-quadratic shape. 

The peak position of the parabola also changes as the function of temperature. At low 

temperatures, the profile of the reaction rates is no longer smooth because of the many 

local minima of the FELs. 

The other interest of our research is to explore the relationship between FEL and 

system dynamics. The FEL corresponds to the thermal fluctuation of the system, 

however the FEL does not perfectly govern the system dynamics. This is because the 

FEL is defined by the thermal equilibrium state where the dynamical behaviors 

become invisible. In addition, the FEL is a highly conceptual quantity because it is not 

directly observable. Thus we introduced a model which enables us to calculate both 

static and dynamic quantities and to attempt to explain the system dynamics on the 

FEL by means of linear and nonlinear IR spectroscopies.  
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   In Chapter 4, a model for the dipolar crystal system is employed to explore a role 

of FEL, in which dipolar molecules are posted on two-dimensional lattice sites with 

two-state librational dynamics. All dipole-dipole interactions are included to have 

frustrated interactions among the dipoles. For the regular and distorted lattice cases, the 

FEL is calculated from the interaction energies and the total polarizations for all 

possible dipolar states at various temperatures. At high temperature, the shape of the 

calculated FEL is smooth and parabolic, while it becomes bumpy at low temperature 

exhibiting multiple local minima.  To study dynamical aspects of the system, the 

single flip dynamics and the single-double mixed flips dynamics of dipoles are 

examined from a master equation approach. As the observables of linear absorption 

and two-dimensional (2D) infrared and far infrared spectroscopies, the first- and 

third-order response functions of polarization are calculated for different physical 

conditions characterized by the FEL. While the linear absorption signals decay in time 

in a similar manner regardless of the FEL profiles, the 2D signals exhibit prominent 

differences for those profiles. This indicates that, we may differentiate the FEL profiles 

by changing two-time valuables in 2D spectroscopy. As illustrated in the single-double 

flips case, the FEL study by means of 2D spectroscopy, however, depends on the 

dynamics which is set independently from the FEL. The Smoluchowski equation is 

applied to examine the description of the collective dynamics on the microscopically 

calculated FEL. We found that the 1D and 2D signals calculated from the 

Smoluchowski equation agree with those from master equation only at the 

temperatures where the FELs become parabolic shape.  
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Appendix A 
Brief Summary of Random Energy Model 
(REM) 
 

In a framework of the random energy model (REM)[58][59], all dipole-dipole and 

charge-dipole interactions are assumed to have a random Gaussian distribution 

function characterized by the averaged charge-dipole and dipole-dipole interactions 

)(qξ  and J , and their standard deviations ξΔ  and JΔ .  The average solvation 

energy is then given by, 

 ( ) ( ) 2E x N x q zJxξ⎡ ⎤= +⎣ ⎦ , (A.1) 

where z  is the average number of dipoles interacting with each single dipoles. The 

standard deviation of the solvation energy is assumed to be independent of x  and 

given by 

 2 2 2E N z Jξ⎡ ⎤Δ = Δ + Δ⎣ ⎦ . (A.2) 

Introducing the probability distribution ),( Exg  at polarization x  as 

 ( )
( )( )2

2

1, exp
22

E E x
g x E

EEπ

⎡ ⎤−
⎢ ⎥= −

Δ⎢ ⎥Δ ⎣ ⎦
 (A.3) 

yields an average density of states with polarization x  and energy between E  and 

dEE +  

 ( ) ( ) ( ), ,n x E Nx g x E= Ω , (A.4) 

where  

 ( )
( ) ( )

! !
! ! 1 / 2 ! 1 / 2 !
N NNx

n n N x N x+ −

Ω = =
⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦

 (A.5) 

is the total number of states with polarization x . For 1),( >>Exn , one can 

approximate ),(ln Exn  by ),(ln Exn , and the entropy can be written by 

 ( ) ( ) ( )
( )( ) ( )

2

2, ln , ln ln 2
2

E E x
S x E n x E Nx E

E
π

−
≈ = Ω − − Δ

Δ
. (A.6) 
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( )
( ) ( ) ( )

( ) ( )( )( ) ( )

2

REM
1/ 2

1
2,

1 2

c

c

EE x TS Nx T T x
N TF x T

E x E S Nx T T x
N

∗

∗

⎧ ⎛ ⎞Δ
− − >⎪ ⎜ ⎟⎪ ⎝ ⎠= ⎨

⎪ − Δ ≤⎪⎩

The above approximation is not valid below the critical energy, 

 ( ) ( )( )1/ 2
2 lncE E x E Nx≈ −Δ  (A.7) 

since the entropy becomes negative.  Therefore we set 0),( =ExS  for )(xEE c< . 

This result indicates a polarization-dependent phase transition at the temperature 

 ( ) ( )c
ET x

S Nx∗

Δ
= , (A.8) 

where the configuration entropy )(* NxS  is given by ( )( )NxNxS Ω= log)(* . In the 

large N  limit, the configuration entropy becomes 

 ( ) 1 1 1 1ln ln
2 2 2 2

x x x xS Nx N∗ ⎡ ⎤+ + − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (A.9) 

with the aid of the Stirling’s formula. Then the free energy landscape for REM 

approximation is expressed as 

  (A.10) 

  (A.11) 

To determine the average number of interacting dipoles z  for dipole-dipole 

interactions, which affects long range, we use the following condition: 

 ( ) ( ) ( )REM1, / 1, / 1 /F T N F T N E N= =  (A.12)               

Note that, in Eq. (A.12), we always use the free energy for )(xTT c≤  because )(xTc  

becomes infinite when 1→x . 
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Appendix B 
Derivation of the Smoluchowski Equation 
 

In this Appendix, we discuss the relation between the master equation and the 

Smoluchowski equation. The time evolution of our system is given by the master 

equation Eq. (4.3.1) and the probability distribution vector ( )tρ
JG

 has 2N  states. Here 

we rewrite the Eq. (4.3.1) as the following form 

 ( ) ( ) ( ) ( ) ( ), ,i j ii j j i
j

t t t
t
ρ ρ ρ∂ ⎡ ⎤= − − −⎣ ⎦∂ ∑ L L . (B.1) 

For the high temperature case, the transition occurs absolutely if two states are 

connected with given dynamics, thus the transition matrix, ( ) ( )1 2α β− = − −L L L , can 

be written as 

 ( ) ( ) ( )1 2
, ,, i j i ji j

C Cα β− = +L , (B.2) 

where ( )
,
n

i jC  is the connectivity coefficient introduced in the section 4.3. Assuming a 

single flip and double flips of dipole in the system whose polarization is jP , we can 

construct the rate equation expressed as 

( ) ( ) ( ) ( ) { }( )
( ) ( ) { }( )

( ) ( ) ( ) ( ) { }( )
( ) ( ) ( ) ( ) ( ) { }( )

1
, , , ,

1
, ,

2
, , ,

2 2
, , , ,

                                           

1
 2

2

  + 2

i i j

j

i j

j j

i P i P j P i j i j
j

j P i j i j
j

i P j P i j i j
j

j P i j i j j P i j i j
j j

t N t t C P P P
t

t C P P P

N N
t t C P P P

t C P P t C P P P

ρ α ρ α ρ δ

α ρ δ

β ρ β ρ δ

β ρ δ β ρ δ

∂
= − + − − Δ

∂

+ − + Δ

−
− + − − Δ

+ − − + Δ

∑

∑

∑

∑ ∑

, (B.3) 

where ( ), ii P tρ  is the ith component of the probability distribution vector ( )tρ
G

 and 

the subscript iP  is introduced for representing the polarization of the ith state. Here 

we calculate the polarization and time probability distribution function ( )( ),H P k t  

by summing Eq.(B.3) over all states with the same polarization ( )P k .Operating 

( ), iP k P
i
δ∑ to both sides of Eq.(B.3), we obtain 
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( )( ) ( )( )

( )( )

( )( )

( ) ( )( )

2
2

2
2

, ,
4 2

                         1 ,
2

                         1 ,
2

3 1                         1 3 2 ,
8 4 2

 

N NH P k t N k H P k t
t

N k H P k P t

N k H P k P t

N N k k N H P k P t

α β

α

α

β

⎡ ⎤⎛ ⎞∂
= − + − +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦

⎛ ⎞+ + − −Δ⎜ ⎟
⎝ ⎠
⎛ ⎞+ + + + Δ⎜ ⎟
⎝ ⎠
⎧ ⎫

⎡ ⎤+ + + + − + − Δ⎨ ⎬⎣ ⎦
⎩ ⎭

( ) ( )( )
2

23 1                        1 3 2 ,
8 4 2

N N k k N H P k P tβ
⎧ ⎫

⎡ ⎤+ + + + + + + Δ⎨ ⎬⎣ ⎦
⎩ ⎭

. (B.4) 

Here assuming ( )P k  be continuous variable and taking large N  limit, we get  

 ( ) ( )
2

2, ,H P t P D H P t
t P P

γ
⎛ ⎞∂ ∂ ∂

= +⎜ ⎟∂ ∂ ∂⎝ ⎠
, (B.5) 

where we set ( )2 Nγ α β= +  and ( )2 / 2D N P Nα β= Δ + . The first and second 

terms correspond to the drift term and diffusion terms, respectively. 
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Appendix C 
Linear Absorption Signal from 
Smoluchowski Equation Approach 
 

If the potential is harmonic, the Smoluchowski equation for a given arbitrary 

initial condition can be easily solved as 

 ( ) ( ) 2

0
, exp exp

2 2n n
n

H P t a n t P H P
D D
γ γγ

=

⎛ ⎞⎛ ⎞= − − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ , (C.1) 

where ( )nH ξ  are the Hermite polynomials and na  are the initial values for n th 

eigenfunctions.  For 1D spectroscopy, the nonlinearity of dipole plays a minor role, so 

we can set 0ε=  in Eq.(4.6.3). At high temperature, the FEL is approximated by 

parabolic function, so that the initial condition of the Smoluchowski immediately after 

excitation is expressed by the first Hermite polynomial, i.e. 

( ) ( ) ( )2
1,0 expH P H−∼ ξ ξ , where / 2DPξ γ= .  Thus, the 1D signal for high 

temperature is analytically evaluated as 

 ( ) ( ) 2
1 1exp exp

2 2
S t t dP P H P

D D

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟− − ⎜⎟⎜ ⎟⎜⎟⎜ ⎟⎟⎝ ⎠ ⎜⎝ ⎠∫∼ γ γ
γ . (C.2) 

This equation indicates the signal decays exponentially as the relaxation of collective 

mode with the relaxation rate γ . 
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