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Chapter 1

OVERVI EWS

1-1. Two-dimensional Raman Spectroscopy

Since the advent of laser technology, optical spectroscopy has moved into a revolutionary

new era. Development of nonlinear ultrafast spectroscopy, in particular, has provided exciting
new opportunities for researches in a lot of unexplored areas of science and technology. At the
same time, the development enables us to perform the new spectroscopic methods. One of
these spectroscopic methods is two-dimensional (2D) Raman spectroscopy which is
analogous to 2D nuclear magnetic resonance.[1] [2]

2D Raman spectroscopy has been expected to be useful for extracting homogeneous
broadening from inhomogeneous broadening.[2] [3] [4] [5] [6] [7] The experiments of 2D
Raman spectroscopy, however, were very difficult because their signals were very weak and
removing the cascading signal was difficult.[8] The successful demonstration of 2D Raman
spectroscopy were done by using CS, [9] [10] [11] and benzene [12] both of which have
strong polarizabilities.

In spite of these experimental difficulties, theoretical researches have been continued
actively because 2D Raman spectroscopy has possibility to reveal the underlying dynamics
which cannot be observed in linear Raman spectroscopy. Okumura and Tanimura showed the
2D Raman signal was originated from the nonlinear coordinate dependence of polarizability
and anharmonicity of potentials.[13] Saito and Ohmine performed the normal mode
calculation of the 2D Raman signals which included only the nonlinear polarizability
contributions. However, the anharmonicity of potential contribution was not negligible. Ma
and Stratt calculated the 2D Raman signal for Xe from the molecular dynamics (MD)
simulations [15] based on a stability matrix formalism.[1] [16] In this method, the fluctuation
of polarizability of a system which is related to the 2D Raman response functions via the

fluctuation dissipation theorem was calculated.[17] The calculated 2D signals from MD



simulation with the stability matrix formalism [18] reasonably agreed with experimantal
results for liquid CS; system.[9] On the other hand, 2D Raman signals were calculated from a
non-equilibrium MD simulation by Jansen et al. in which the laser field was explicitly
radiated into the system.[19] [20] [21] In many cases, this non-equilibrium MD method is
computationally less expensive than the MD simulation based on the stability matrix
formalism. Then, Hasegawa and Tanimura developed a less computationally expensive MD
simulation algorism by incorporating the non-equilibrium method into the equilibrium MD
method with the fluctuation-dissipation theorem and calculated 2D signals for various
liquids.[22]

The approximations to calculate the 2D Raman signal have been also developed. Keyes et
al. used the Langevin equation formalism.[23] [24] DeVane et al. developed the time
correlation function theory and applied it to the CS, [25] and atomic liquids [26] to calculate
the 2D Raman signals. Denny and Reichman used the microscopic molecular hydrodynamics
theory for the 2D Raman spectrum of Xe in which the multi-point correlation function was
factorized into the products of density correlation functions.[27] [28] The comparison of the
results using the microscopic molecular hydrodynamics theory with MD simulation results
[15] showed the complete lack of an echo in the hydrodynamic theory. These incomplete
descriptions of the 2D Raman signals with these approximated methods may indicate the
importance of the multi-point correlation functions and the stability matrix.

Saito and Ohmine investigated the effects of anharmonic dynamics [29] [30] and stability
matrix.[29] According to the Okumura and Tanimura’s prescription, [13] they focused on t;
and t, =t, axes for the detection of anharmonic dynamics and stability matrix contributions,
respectively. To compare the 2D Raman signal quantitatively, Nagata and Tanimura projected
2D Raman signals to 1D plots without loss of information on the stability matrix using the
symmetric and anti-symmetric integrated response functions.[31] They found the dynamics of
soft core particles were different for in the liquid phase and in the solid phase even in the
ultrafast time scales, which could not be observed in linear Raman spectra. The dynamics was
composed of the two modes; one was a localized mode and the other a delocalized mode.[32]
These modes were confirmed in the frequency domain 2D Raman maps more clearly than 1D

plots.[33] Moreover, they showed that the phase change of the 2D Raman signals was



originated from the nonlinear polarizability contribution rather than anharmonicity
contribution, [33] which indicated that the nonlinear polarizability was sensitive to the
structural change. Temperature dependence of the 2D Raman spectra was also investigated in
the framework of the time correlation function theory.[34]

As we overview these theoretical works on the 2D Raman spectroscopy, it has potentials to
investigate the intermolecular interaction and related dynamics in condensed phases through
nonlinear polarizability and anharmonic dynamics. Such measurements are, however, difficult
and, therefore, new innovations on experimental techniques are called for. Alternatively, some
theoretical research themes should be focused on as a target of the 2D Raman spectroscopy.
lonic liquids [35] or liquid mixtures such as water and acetonitrile [36] [37] [38] are
interesting systems to carry out the 2D Raman measurements. Although the sensitivity of the
2D Raman spectroscopy to the dynamics between solid and liquid phases was investigated in
the present thesis, the sensitivity to the dynamics near the critical temperature is also
interesting issue. | believe further researches in such problems make the future of the 2D

Raman spectroscopy brilliant.

1-2. Two-dimensional Surface Spectroscopy

The subject of CO bonding and intermolecular dynamics on metal surfaces has attracted

considerable attention, with much of the information about the nature of the bond being
inferred from measurements of the intramolecular vibrational mode.

As the first stage of theoretical studies, the mechanism of the fast relaxation of the CO
stretching mode on metal surfaces was investigated. By using the Anderson model, Persson
and Persson showed an electron-hole (e-h) pair creation mechanism contributed to the fast
relaxation compared with the phonon effects or the dipole-dipole interactions.[39] e-h pair
creation was explained as the action of the induced dipole moments on metal surface caused
by the large dynamic dipole moments of CO. The vibrational lifetime estimated was estimated
as (3J_r1) ps, which accords with the experimental results.[40] Head-Gordon and Tully
explained the e-h pair creation as a non-adiabatic process. Based on the Fermi’s golden rule,

they obtained the following expression for the vibrational lifetime
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where P(g;) and G represented the local density of state below Fermi energy ¢ and
scattering matrix, respectively. Equation (1.1) is analogous to Fisher and Lee formula [42]
[43] and Seideman and Miller formula.[44] This analogy indicates CO adsorbed on metal
surfaces works as the scattering source for free electrons of metal surfaces, because the CO
creates discrete energy levels against the continuous energy levels of metal surfaces.[45]
Moreover, Head-Gordon and Tully evaluated the vibrational lifetime from the ab initio
calculation by replacing the P(g;) and P(g;) with the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO).[46]

Following these studies, MD simulation in the dilute CO limit was carried out by Tully et
al..[47] They treated e-h pair creation as a stochastic process. The residence and random force
were calculated from the first principle calculation through Eq. (1.1) and the second
fluctuation-dissipation theorem, respectively. They concluded that the relaxation of the CO
stretching and CO frustrated rotational modes arose from e-h pair creation, while those of the
C-Cu stretching and CO frustrated translational modes were affected by both Cu lattice
vibration and e-h pair creation. As the following researches, MD simulations in the medium
coverage were performed to investigate the latest coupling between adsorbed molecules on
surfaces.[48] [49]

Experimentalists have also made continuous effort to reveal the underlying dynamics
caused by the interactions between adsorbed molecules. Interactions between adsorbed
molecules play an important role on the geometry and lateral hopping of CO on Pd(100)
surface. Moreover, particular attention has been paid to study the overtone and combination
bands of CO on Ru(001). Broadening of the overtone frequency of the CO stretch rapidly
grows with increasing temperature due to thermally activated decay of two-photon bound
state into single phonon states.[50] Large anharmonicities due to lateral coupling lead to the
formation of localized two-phonon bound states besides a continuum of delocalized
two-phonon states.[51] Investigating the CO-CO interaction is crucial to reveal the underlying
mechanism of surface dynamics.

Here, it is hopeful to apply the 2D techniques to surface spectroscopy as the 2D infrared



(IR) spectroscopy has succeeded the direct observation of coupling between different modes.
In fact, such new attempts in surface spectroscopies have been actively done for several
decades. Guyot-Sionnest combined the photon echo techniques with sum-frequency
generation (SFG) [52] [53] to separate the homogeneous linewidth from an inhomogeneous
broadening for Si-H vibrations on Si(111) surface.[54] M. Bonn et al. determined the
intermolecular coupling strength of dipole-coupled CO molecules on Ru(001) using
infrared-infrared-visible (IR-IR-VIS) SFG.[55] However, IR-IR-VIS SFG is a third-order
nonlinear optical process and is not surface-specific. N. Belabas and M. Joffre demonstrated a
visible-infrared 2D spectroscopy in AgGasS,.[56] C. Voelkmann et al. combined four-wave
mixing with the second-harmonic generation to monitor the temporal evolution of
photoexcited one- or two- photon coherence.[57] These experiments have two time intervals
between pulses to obtain the information which cannot be accessed by spectroscopies with
one time interval.

Nagata and Tanimura investigated the second-order 2D IR surface spectroscopy and
revealed the CO latest coupling is dramatically changed by the frustrated rotational mode

using MD simulation.[58] The response function in this spectroscopy has the following form.
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where /,za(t) is the dipole moment at time t in a direction.[1] [59] [60] t, and t, are
the time intervals between first and second interactions with IR pulses and between the
second interaction and the detection of the signal, respectively. Since the fifth-order Raman

response function

8 t)= 1] (I na @), ) @3

has the same form as the response function of surface 2D spectroscopy, similar techniques and
analyses developed in 2D Raman spectroscopy are expected to be useful in 2D IR surface
spectroscopy.[2] [13] [15] [16] [18] [19] [22] [31] [33]

The potentials of these new spectroscopies are not limited to the metal surface but extends
from the gas-liquid interfaces,[61] [62] and liquid-solid interfaces [63] to biological system

such as membrane systems. Since the signals from the surfaces, however, are weaker than



those form bulk system, multi-dimensional spectroscopies on surfaces may have much
difficulties by means of experiments. Nevertheless the author believes the importance and

necessity of 2D IR surface spectroscopy will not be faded out.
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Chapter 2

TWO-DIMENSIONAL RAMAN SPECTRA OF
ATOMIC LIQUIDS AND SOLIDS

2-1. Introduction

One important aspect of molecular vibrational spectroscopies is the ability to monitor

ultrafast molecular dynamics controlled by complex inter- and intra-molecular interactions.[1]
Vibrational relaxations are in principle dependent upon the configurations of atoms; therefore,
we may expect that the information about the local environments of molecules can be
obtained by analyzing changes in spectra as functions of conditions such as phase, density,
and temperature. However, conventional linear spectroscopy does not reveal such changes
because the large broadening caused by damping and inhomogenity makes spectral peaks
featureless. To conquer these difficulties, 2D vibrational spectroscopies such as fifth-order
Raman spectroscopy [2] [3] [4] and third-order IR spectroscopy [5] have been proposed. In
fifth-order Raman spectroscopy a system is perturbed by two pairs of Raman pulses separated
by period t; and then probed after another period t,, whereas in the third-order IR
spectroscopy a system is perturbed by three IR pulses separated by periods t; and t, and then
probed after another period t;. These 2D spectroscopies enable us to evaluate the detailed
interrogation of the interactions and configurations between molecules, because the
contributions to the signals from harmonic vibrational motions vanish in multi-dimensional
spectroscopies due to the fact that the Gaussian-integral involves in three-point correlation
function, i.e. ([II(t, +t,)I1(t,)}I1(0)]) for the fifth-order Raman processes and the
destructive interferences between vibrational excitations in four-point correlation function, i.e.
(Maet, +1, +t,), pult, +1,)] 2e(t,)} (0))) for the third-order IR spectroscopy, where II(t) and
y(t) are a polarizability and a dipole moment at time t. A very large body of theoretical

works on 2D Raman and IR spectroscopies have been devoted to the study of
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inhomogenity,[1] anharmonicity,[6] [7] [8], and so on. MD simulations have explored
ranging from liquids [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] to more complex
molecules such as peptides.[19] [20] [21] [22]

2D Raman spectroscopies are advantageous in studying molecular dynamics in condensed
phases because Raman pulses can create instantaneous vibrational excitations on the
molecular system and their coherence can be detected by spectroscopic means.[23] [24] [25]
[26] The sensitivities of the 2D spectra to anharmonicity of the potential and nonlinear
dependence of polarizability on nuclear coordinate have been theoretically demonstrated by
use of the simple models and have been clarified to some extent with the help of quantum
Liouville pathway treatments.[27] [28] [29] But most of these studies have not yet provided
helpful pictures of the processes giving rise to particular spectral features in both
experimental data and MD simulations. Moreover there has been little guidance from theory
on how to distinguish motions of solids and liquids based on these spectroscopies.

In this study, we performed MD simulations to investigate how the fifth-order response
functions measured in 2D Raman spectroscopy depended on temperature and thermodynamic
state. We have chosen the soft-core model for these simulations because its scaling property
allows us to discuss the phase transition as a function of temperature.[30] [31] [32] Note that
the soft-core potential has been used to model metallic glasses with soft modes and has been
one of the widely acknowledged models explaining so-called “boson peak”.[33] We explored
the use of the symmetric and anti-symmetric expressions of the integrated 2D Raman
response functions to clarify the interpretation of the spectroscopy data. These functions were
originally introduced for an easy check of the simulation results.[34] We then projected the
2D profiles onto two kinds of 1D plots: one is the classical fifth-order response functions on
the ty=t, axis [16] and the other is the anti-symmetric integrated response function on the t;=t,
axis. Because these functions can be constructed from experimental data as well as simulation
results, they will be valuable for analyzing the effects of nonlinear dynamics, for instance, as
result from anharmonicity of the potentials upon the fifth-order signals. The results of our
MD simulations indicate that 2D Raman spectroscopy can detect the change in the character
of molecular motions in different phases in a way that cannot be observed in third-order

Raman spectroscopy. On the other hand, the profile of the 2D Raman signal is not sensitive to
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the temperature changes as long as the system is in the same phase. Moreover, when the
symmetric integrated response function, which has the form of a simple three-body
correlation function, is compared with the anti-symmetric one, with the form of a three-body
correlation function including the stability matrix, it is realized what a critical role the
stability matrix plays in extracting dynamical information from the fifth-order response
function.

In Sec. 2-2, we explain our model and simulation procedures. In Sec. 2-3, we introduce the
symmetric and anti-symmetric integrated response functions and in Sec. 2-4 we analyze the
calculated signal with these functions. In Sec. 2-5, we discuss the temperature and phase

effects on the signals. Finally, Sec. 2-6 is devoted to concluding remarks.

2-2. Computational Details

We perform microcanonical MD simulations with a periodic boundary condition on a

system with 108 spheres interacting via a soft potential [33]
6 4
U(r):g(gj +A(Lj +B, 2.1)
r o}
where & and o are the potential parameters, and the constant A and B are chosen to
connect the force and potential smoothly at the cutoff r,. Thus A and B are given by
3/2-¢(o/r,)"” and —5/2-&(o/r, ), respectively. The molecular system is controlled by laser
pulses. The optical response of the system is then described by a correlation function of the
polarizability. The total polarizability is treated using a dipole-induced dipole (DID) model,
which can be expressed as [35] [36]
o G S

where «,, is the molecular polarizability of atom m. The second term is important

because it possesses the information on the configuration of the surrounding particles. The

third- and fifth-order response functions, R (t,) and R (t,,t,), which are

associated with the 1D and 2D Raman spectroscopy, respectively, are given as follows.[1]
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where T (t) is the ab tensor element of the polarizability at time t, [A, éJz AB-BA is the

quantum commutator, and (---) is an ensemble average over an equilibrium initial

distribution. In the classical limit, the operators E and F commute with e** and we have
[10]

Ra(lgzzd (tl) = _ﬂ<ﬁab (tl )H od (O)> ' (2.5)
Re(lgt):def (tz 1t1) =p <H ab (tz )H od (O)Hef (_ L )>
= AT ()T 0) 14 (1)}, ), (2.6)

where {--},, denotes the Poisson bracket producing stability matrices &p,(t,)/aq,(0)
representing how large the deviation of the momentum of atom k at time t, is caused by the
slight displacement of atom | at time 0.[37] The significance of the fifth-order measurement
arises from the correlation function including the stability matrix, since the stability matrix
carries the information on the interference of the particle trajectories that cannot be obtained
from the third-order measurement.

There are two approaches to evaluate these signals using MD simulations, the equilibrium
approach [11] [15] [16] and the no-equilibrium approach.[13] [14] [16] Here we adopt the
former, because it best reveals the importance of the stability matrix to determine the nature of
the fifth-order Raman response. In the stability matrix approach, we first carry out the
equilibrium simulation, then evaluate the response function using the trajectories of particles
obtained from the simulations.

To perform the simulation, we set £=1.0, =10, and m=1.0 without loss of
generality, where m is the particle mass. Because of the scaling property of the soft-core
potential, a temperature times the Boltzmann constant, kT, is chosen as a parameter with fixed
density p =1.0. We use a fourth-order symplectic integrator method with a time step of 0.01.

The particles form an face-centered cubic (fcc) lattice for kT <0.19, and they behave like
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liquid for 0.19 <KT . There is also a body-centered cubic (bcc) phase around KT ~0.19, but
the region of this phase is relatively narrow.[31] [32] Here we calculate the third- and
fifth-order response functions in the fcc solid and liquid phases. The MD simulations start
from an fcc configuration with double the targeted temperature and cools the system by
velocity rescaling at the rate of 0.002 for each time step. After the kinetic energy of the system
reaches kT=0.001, we heat the system up to the targeted temperature. In both cases, we
sample over 60,000 trajectories by preparing different initial configurations to calculate the
response functions, and we use more than 3500 time steps to stabilize the kinetic energy. As
the polarizability is independent of momentum, only &p(t, )/aG(t,) of the stability matrix
element is calculated, which decreases to one-fourth the computational cost of evaluating the

full stability matrices and reduces the memory requirements for sampling trajectories.

2-3. Fifth-order Symmetric and Antisymmetric Integrated Response
Functions

As has been shown in many previous studies, the 2D profiles of the fifth-order Raman

signals are very sensitive to the anharmonicity of the molecular dynamics and nonlinear
dependence of the polarizability. But interpreting the 2D profiles in terms of the underlying
dynamics is difficult due to the complex connection between the dynamics and spectroscopy.
Since the most significant and interesting contribution to the fifth-order signals comes from
the term with the stability matrix,[16] it is valuable and versatile if we can separate it from the
others. For this purpose, we utilize the symmetric integrated response function introduced by
Cao et al.[34] and the anti-symmetric integrated response function.

To simplify the following explanation, we choose z direction for all tensors and afterward
we omit the tensor notation. To make the symmetric form with respect to t; and t, from the

fifth-order response function, we integrate Eq. (2.6) with respect to t;,

b
W(tz,tl)z%'[R(s) (t,,t")dt’
0

=-{nt)ne)n(-)- (e )aenE))+ ()bl . @1
- <{H(t2 )' H(O)}P.B. H(_ L )> - <{H(t2 ), H(O)}P.B_ H(O)>
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Then, by using the relations
1 RO G0 = (N0, )AON0) = (i) nO) 110 @D

and
({1(t, ) 110}  T1(=t,)) = (TI(t, KI1(0). 11(=t, )} 5 ) (2.9)
we have the symmetric integrated response functions as
S(t,,t,)=Wi(t,,t,)-Wi(t,t,)
= A{TI(t, I1O)1(~t, ) + A(T1(t, 1(O)1(0)) ~ ATI(ONTO)I(-t,
Here, we also introduce its counterpart, the anti-symmetric integrated response function,
Aty t,) =W (t,,t,)+W (L, t,)
= (11(e, {11(0). (=1, )} )~ (THORTI(0) T1(-t, ) ) . (21
+({1(t,). 11(0)5, o 11(-t,)) — ({r1(t, ). 11(0);, , T1(0))

Although no special attention has previously been paid to the anti-symmetric integrated

) (2.10)

response function, we find that it contains the key to analyze liquid dynamics because it
isolates the contribution of the stability matrix from that of the simple three-point correlation
function. In the following, we demonstrate this point by using the present model in the solid
and liquids phases. If the above expressions are described with the normal mode, the last two
terms in Egs. (2.10) and (2.11) negate with the terms such as TI'TI'TI (see Eq. (23)). Thus,
the leading terms of the symmetric and anti-symmetric integrated response functions both
involve TI'TI'TI'.
As is evident from the definition, these functions satisfy the relations,
S(t,.t,)=-S(t,.t,), (2.12)
and
Alt,,t,)= At t,). (2.13)
Moreover, the functions are orthogonal to one another,

[Jtdt, Alt,.t)-S(t,.t,)=0, (2.14)
which indicates the information of the symmetric integrated response functions is independent
of that of the anti-symmetric ones.

The symmetric integrated response function S(t,,t;) is useful for self-consistent checks of

numerical simulations,[34] because it does not involve the stability matrix and its numerical
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calculation is 1/N? times faster than that of the full fifth-order response function. On the
contrary, calculation of the anti-symmetric integrated response function, A(t,,t;), requires the
same cost as calculation of the fifth-order response function. But it contains the important
information on coherent molecular motions described by the stability matrix. It is of
importance to notice that although the present analysis is based on the MD simulation, one
can also construct the symmetric and anti-symmetric integrated response functions from
experimental data. By utilizing these functions, one can quantitatively discuss the effects of
nonlinear dynamics, for instance, from anharmonicity.

To illustrate the nature of these functions, we calculate them from the soft-core model in
the solid and liquid phases. In Fig. 2.1, we plot the fifth-order response function R® (tz,tl),
the symmetric and anti-symmetric integrated response functions S(t,,t;) and A(t,,t;), and the
derivatives of S(ty,t1) and A(ty,t;) with respect to t;,

RO(t,,t,)=0S(t,,t,)/at, , (2.15)
and
RO(t,,t,)=0A(t,.t,)/ct, (2.16)
for kT=0.155 in the solid phase. To compare the contributions of the symmetric and
anti-symmetric components of the fifth-order response function, in Fig. 2.2 we plot the
diagonal slices R®(t,t), RO(t,t)=0aS(t,.t,)/at| . and RY(tt)=0A(t, b)/ot)_ _ of
RO(t,.t,), RO(t,t), RO(t,,t). Noticethat R®(t,,t,)=RE(t,,t,)+ RO (t,.t,).

The position of the peak appearing in R® (tz,tl) IS not necessarily located on the t;=t;
axis. In fact, we can estimate the peak position in Fig. 2.1(a) is (t,,t,)=(0.77,0.64) by using
a parabolic interpolation. Analyzing the fifth-order signals is difficult because 2D profiles of
the signals are usually featureless and the locations of their peaks do not necessarily
correspond to specific physical processes. Although the profiles can be changed with the
physical conditions, it is very hard to choose portions of the 2D signals to make comparisons.
Since the anti-symmetric integrated response function always exhibits a symmetric peak
along t;=t, axis and is sensitive to the physical conditions due to the contribution from the
stability matrix term, it is more instructive to analyze the signals using it instead of the
fifth-order response function. In the following, we discuss the parameter dependences of the

2D Raman signals with the help of the anti-symmetric integrated response function.
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Figure 2.1. () R®(t,,t,), (b) S(taty), (¢) Altaty), (d) R (t,.1,), and (&) RO (t,,t,) at kT=0.155 in
the solid phase. The peak position at (t2 ,tl) = (0.77,0.64) is denoted by a double circle in Fig. 1(a).
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Figure 2.2; Diagonal slices (t=t;=t,) from the signals depicted in Fig. 2.1: R(S)(t,t)(solid curve),
RO (t,t)(dotted), and R (t,t)(dashed).

2-4. Symmetric and Antisymmetric Integrated Response Function for
Normal Mode Analysis

In a normal mode analysis, molecular motions are represented by an ensemble of

oscillatory motions along the nuclear coordinates.[1] [38] [39] [40] This analysis is often
useful since it gives us access to the microscopic dynamics related to a specific vibrational
frequency.[41] Since the fifth-order experiments have the ability to measure anharmonic
vibrational motions through the stability matrix term, it is interesting to observe how the
symmetric and anti-symmetric integrated response functions contribute to the signals in the
normal mode analysis.

When the polarizability is given in powers of a molecular coordinate as

m(t)=11(0)+11'(q(t)-q(0)+ > T1"(alt) - a(0))" +---, (2.17)

1
2
the third- and fifth-order response functions R®(t,) and R®(t,,t,) can be expressed as

RO, )= (II'TI'C"(t, )) o« [dapl Sin (et ) (2.18)

ROt 1) = (IS )C' )+ Cl 1)

o« [dapl) NS ) sin(oft +1,)): (2.19)
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where C”(t)=sin(wt)/w. We then obtain the following results on t=t;=t,,

S(t,t)=0, (2.20)

ocJ.da)p(a))Sin?’gwt). (2.21)
1)

Since S(t,t) gives zero, we substitute R (t,t) and R®(t,t) for S(t,t) and A(t,t),

]
RéS)(t,t)mIdwp(w)Sln (a)t)(l;COS(a)t))1 (222)
w
RO (t.1) o Idw sm ? (et )cos(et) (2.23)
= . .
R(t,t), RO(t,t),and RO (t,t) can be expressed interms of R®(t) as
t
RO(t,t)oc [dt(6R™(3t)+ 4R)(21) - 2RO(1)), (2.24)
0
t
RO (t,t)oc [dt(-3RO(3t)+ 4R (2t) + R(1)), (2.25)
0
t
RP(t,t) o« [ dt(oR® (3t)-3RC()). (2.26)
0

Thus, by comparing R®(t,t) and R{®(t,t) calculated from the fifth-order response
functions with [ dt(~3R®(3t)+ 4R(2t)+ R(t)) and [ dt(9R® (3t)-3R™(t)), we can

easily estimate the contribution from the anharmonic dynamical terms resulting from the
stability matrix and the validity of the normal mode expressions. In Fig. 2.3, we compare
R (t,t), RO(t,t), and RO (t,t) with their expressions in terms of R®(t) under the
normal mode assumption. Figure 2.3(a) clearly shows us that the normal mode expressions
fail to predict the fifth-order response functions even in the short time region. However, if
we focus on Fig. 2.3(b), we see that the normal mode expressions for the symmetric
integrated response functions are valid in the region t <0.10. The normal mode analysis can
describe the accurate dynamics in the short time, which is consistent with the results of the
symmetric integrated response functions. One of the reasons for the large deviation at
t>0.10 can be deduced from Brownian motion theory. When the function C”(t) is

expressed by
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C”(t)zée‘“/z sinlyw? -2 /4t (2.27)
,602 _é,z/4 ( )

in the Brownian oscillator model, the quantities calculated from the fifth-order response

function decay more rapidly than the predictions using the third-order response function. On
the other hand, in Fig. 2.3(c), R®(t,t) deviates from I;dt(QR(3)(3t)—3R(3)(t)) even for

t <0.10, which indicates that the anharmonic contribution from the stability matrix
(TI'I'TI'(6q(t,)/op(0))d(-t,)) plays an important part in the anti-symmetric integrated
response function. Moreover the deviation of the fifth-order response function from the

normal mode expression shown in Fig. 2.3(a) is mainly caused by the anti-symmetric part.

2-5. Temperature Dependence

We discuss the response functions in the solid and liquid phases at different temperatures.

In Fig. 2.4(a), we depict the third-order response functions R(3)(t) for kT=0.215 and 0.20 in
the liquid phases and for kT=0.155 and 0.14 in the solid phases.[42]

The profiles of the third-order signals in Fig. 2.4 are similar but their decay times are

slightly different for different temperature.[43] The fifth-order response functions R(S)(tzvtl)
are shown in Fig. 2.5. To illustrate the difference between solid and liquid phases, we also plot
R®)(t,t) for different temperatures as 1D maps in Fig. 2.6. There are differences between
Figs. 2.5(a), (b) in the liquid phases, and (c), (d) in the solid phases for t, >0.2 and t, >0.2.
Figure 2.6 clearly shows that the phase change leads to a change of the spectral decay rates
especially for t>0.15, while the temperature change has a limited effect as long as the

system is in the same phase.
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RO (t,t) (solid line) and [ dt(~3R(3t)+4R® (2t)+ R®)(t)) (dotted line), and (¢) R (t,t)

(solid line) and J-; dt(9R‘3) (3t)—3R(3)(t)) (dotted line) at kT=0.155 in the solid phase. In each figure,

the intensities of the solid lines are normalized at the first peak and the dotted lines are scaled so that their

derivatives are same as those of solid lines near t=0.

24



1.0

0.8

0.6

0.4

Response Function

0.2

0.0}

Figure 2.4. The third-order response functions R(g)(t) are depicted for kT=0.215 (solid line), 0.20
(dotted line) in liquid phases, and kT=0.155 (dashed line), 0.14 (dot-dash line) in solid phases. The
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Figure 2.5. The classical fifth-order response functions R® (tz,tl) for the cases (a) kT=0.215, (b)
kT=0.20 in the liquid phase, and (c) kT=0.155, (d) kT=0.14 in the solid phase. The intensity of each plot is

normalized at the first peak.
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Figure 2.6. The diagonal elements, R®) (t,t), are illustrated for kT=0.215 (solid line), 0.20 (dotted line) in
the liquid phase, and kT=0.155 (dashed line), 0.14 (dot-dash line) in the solid phase. The intensity of each

plot is normalized at the first peak.

Although we can observe differences in the fifth-order response functions between different
phases, it is more convenient to employ the symmetric integrated response function S(ty,t;)
and the anti-symmetric one A(t,,t;) so as to see the effects of the stability matrices. In Figs. 2.7
and 8, we depict these functions. The diagonal elements of the anti-symmetric integrated
response functions A(t,t) are also plotted in Fig. 2.9. While we observe similar tendencies
among the results of S(t,,t1) in Figs. 2.7(a)-(d), we see the clear difference among the results
of A(ty,ty) in the liquid and solid phases in Figs. 2.8(a)-(d) in t, >0.2 and t, >0.2 and Fig.
2.9 in t>0.15. Although we cannot do longer simulations due to the limitations to our
computational power, we may expect the bigger and clearer differences in the decay rates in
the anti-symmetric response functions appear in the longer time region. The sensitivity of
A(ty,t1) and insensitivity of S(t,,t;) to the phase change result from the stability matrix which
reveals deviations from harmonic motion as the interference between the trajectories. The
anti-symmetric integrated response functions, which can be obtained from experimental data
as well as simulation results by following the procedure explained in Sec. 2-3, are more
valuable than the symmetric ones, because the former allow us to estimate the contribution

from the stability matrix directly.
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Figure 2.7. The symmetric integrated response functions S(t2 ,tl) are plotted as 2D contour maps for the
cases (a) at kT=0.215, (b) at kT=0.20 in liquid phase, and (c) at kT=0.155, (d) at kT=0.14 in solid phase. The

intensity of each figure is normalized at the first peak.
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Figure 2.8. The differences of the anti-symmetric integrated response functions A(tz,tl) are plotted as
two-dimensional contour maps for the cases (a) at kT=0.215, (b) at kT=0.20 in liquid phase, and (c) at

kT=0.155, (d) at kT=0.14 in solid phase. The intensity of each plot is normalized at the first peak.
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Figure 2.9. The diagonal elements A(t,t) are illustrated for kT=0.215 (solid line), 0.20 (dotted line) in
liquid phase, and kT=0.155 (dashed line), 0.14 (dot-dash line) in solid phase. The intensity of each plot is

normalized at the first peak.
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2-6. Conclusion

Using the MD simulation, we calculated the third- and fifth-order Raman signals of atomic

solids and liquids described by the soft-core potential. To analyze these signals quantitatively
and to reveal the effect of the stability matrix, we have decomposed the classical fifth-order
response function into the symmetric and anti-symmetric integrated response functions; the
symmetric one has the form of the simple three-body correlation function, while the
anti-symmetric one also includes contributions from the stability matrix. The latter can not be
expressed accurately in terms of normal modes expressions even in the short time region,
where the symmetric integrated response function can be. This fact indicates that the
anharmonic contributions which are missing in the normal mode expressions give rise to an
important effect on the fifth-order signals.

It is shown that the change between liquid and solid phases causes a minor effect on the
third-order signals, while it causes dramatic differences in the fifth-order signals. The
anti-symmetric integrated response functions show prominent changes as a result of the phase
transition, whereas the change in the symmetric one is modest. The difference between the
symmetric and anti-symmetric integrated response functions results from the sensitivity of the
stability matrix to the nonlinear dynamics, because the stability matrix reveals the deviation
from the harmonic motion as the interference between the trajectories. This result suggests the
advantage of using the anti-symmetric integrated response functions rather than the fifth-order
response functions for analysis. Such features are, however, unable to be revealed within the
frame work of the normal mode analysis, since it neglects the effects from the anharmonicity
described by the stability matrix.

Since we can always construct the symmetric and anti-symmetric integrated response
functions not only from the simulation results but also from the experimental data, these
functions will be valuable and versatile tools for analyzing the effects of nonlinear dynamics

upon the fifth-order signals.
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Chapter 3

ANALYZING ATOMIC LIQUIDS AND SOLIDS:

TWO-DIMENSIONAL RAMAN SPECTRA
IN FREQUENCY DOMAIN

3-1. Introduction

Nonlinear optical interactions between the laser and molecular system provide valuable

and versatile spectroscopic information to understand the dynamics of the system as well as
its environment. For molecules in a condensed phase, fifth-order Raman and third-order IR
spectroscopies allow us to capture greater details in molecular dynamics and structure than
third-order Raman and first-order IR spectroscopies.[1] The utility and possibility of these
spectroscopies have been demonstrated by various approaches including theoretical
analyses,[2] [3] MD simulations,[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]
[18] [19] [20] ab initio calculations,[21] [22] [23] [24] and a variety of experiments.[25] [26]
[27] [28] [29] [30] [31] [32] [33] Although the potential of multi-dimensional vibrational
spectroscopies is now well recognized, our comprehension of 2D contour maps has not been
achieved completely. In a fifth-order Raman case, this might be attributed to the lack of theory
explaining an overall profile of signal. The previous chapter showed how one could utilize the
symmetric and anti-symmetric integrated response functions [34] to characterize the role of
stability matrix in 1D plots. These functions cannot separate the contribution of nonlinear
polarizability from that of anharmonicity of potentials, but can isolate the contribution of the
stability matrix from that of the simple three-point correlation function. The role of stability
matrix is important in terms of equilibrium simulation, whereas the comparison of the term of
nonlinear polarizability with that of anharmonicity is essential with respect to the normal

mode (NM) analysis.
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This chapter presents a practical method to evaluate the relative contributions of nonlinear
polarizability and anharmonicity of potentials from the experimental and simulation data.
These contributions can be estimated from analytical theories [3] or MD simulations [6][13]
by turning on and off the terms responsible for the contributions; however, it has not been
possible to analyze directly the experimental data especially for multi-mode systems due to
the complication of the 2D maps. Our approach can extract quantitative information about the
ratio between the nonlinear polarizability and anharmonicity of potentials in the molecular
system. To evaluate this ratio, we have derived the analytical expression of the fifth-order
Raman signal for an anharmonic potential system based on a perturbative calculation of a
Morse oscillator system.[3] [13] By carrying out the double Fourier transformation of the
2D time domain Raman signal, we have obtained the frequency domain expressions of the
fifth-order Raman signal. The analysis of spectral volumes gives access to the ratio between
nonlinear polarizability and anharmonicity, which reveals the change of molecular
mechanisms between solid and liquid phases. [7]

In Sec.3-2, we have derived the expression of fifth-order response functions in the
frequency domain. The derivation of the analytical expression for anharmonicity term is
explained in Appendix. In Sec.3-3, we have applied our method to simple liquids described by
a Lennard-Jones (LJ) potential and showed that we can clarify each vibrational mode
uniquely by using 2D frequency domain maps. The NM expressions using the calculated ratio
between nonlinear polarizability and anharmonicity are compared with MD simulation
results.[13] In Sec.3-4, we have further applied our method to the soft core potential systems
to investigate a role of nonlinear polarizability and anharmonicity, which was not clarified in

our previous study.[7] Section 3-5 is devoted to the concluding remarks.

3-2. Frequency-domain Signals of Fifth-order Raman Spectroscopy

The fifth-order Raman response function is defined by a three-body correlation function of

polarizability. In this section, we demonstrate how one can obtain the information of the
nonlinear polarizability and anharmonicity from the experimental and simulation data by

using the analytical expression of the response function.
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We assume the polarizability with ab tensor, Hab(t), is expanded in terms of a single

molecular coordinate q(t) as
’ ﬂl "
Hab(t)_Hab :Habq(t)—i_EHabq(t)z—i_"'a (31)

where A is a perturbation index which is set to unity after completion of the perturbation
expansion. The molecular coordinate is treated as a harmonic motion g, (t) plus a
perturbative anharmonic motion q,(t),

a(t)=a, (t)+ 20, (t)- (3.2)
The fifth-order response function R'®, (t,,t,) is expressed as

Ré(lks)():def (t2 ' tl) = Ré(lg():def LT (t2 ' tl)+ //i’(Ré(lg():def ,NL (t2 ! tl)+ Ré(\f)():def ,AN (t2 ! tl )) ' (33)

where
R 1 () = (LT M (.0 () 34)
and
R e ()= (T T M (.00 (4 ()
# o (MM, .0, 00 (-t) (3.)

1 ’ ’ 14 3
+E<Habncdnef My (t21O)QH (_ tl)qH (_t1)>

are the contributions from linear and nonlinear polarizability, and

1 ! [ [ < 1 r ’ ’ .
Rifc)devaN (t2’t1)= E<HabHCdHef M A(tZ’O)qH (_ tl)>+ﬁ<nabncdnef M H (tZ’O)qA(_ t1)> (3-6)

is that from anharmonicity of potentials. Here, M(t,,t,)=M (t,,t,)+ AM ,(t,,t,) is the
stability matrix for harmonic and anharmonic parts of trajectories, and KT represents the
temperature multiplied by Boltzmann constant.
In the Brownian oscillator (BO) model, the linear polarizability term vanishes and the
nonlinear polarizability term is reduced to [2] [3] [4]
Rk (b2t ) o (T I T )| dw%c"(tz)c%tl)

(o) ’ 37)
(g oo 2o o)
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where C"(t)=sin(wt)e™ and the decay rate, y, is assumed to be independent of  in
order to simplify the following discussion. Hereafter, we adopt the BO model with an
exponential decay and do not take a bi-exponential decay. The expressions of decay functions
do not make much difference on the following procedure and discussion about the ratio
between nonlinear polarizability and anharmonicity of potentials.

Since the fifth-order signal calculated from the BO approach does not involve the
anharmonic contribution, it disagrees with the direct evaluation of the response function by
means of MD simulations. In order to improve the BO approach and evaluate Rgbzdef an (1),
we analytically calculate q,,(t) and g,(t) fora Morse potential,

V(q)=D(e? —2¢7), (3.8)
from the perturbative expansion approach, where g and D are potential parameters. We
then derived the anharmonicity part of the fifth-order response function as

’ ’ ! 14 t
R bt an (11 ) o AT TT ) [ deo plo ) ac 3[2}: (tﬁ;j. (3.9)

An explicit derivation of Eq. (3.9) is given in Appendix, where we compare Eq. (3.9) with the
anharmonic part of the fifth-order response function for the anharmonicity additive potential
and show the accordance of Eg. (3.9) with the expressions obtained by Okumura and
Tanimura and by Ma and Stratt when g, =-6D°.[3] [13]

The anharmonic term (3.9), together with the nonlinear term (3.7), casts the total fifth-order

response function into the form,

Rl 1.t (T2, )00 22, e

(1T ) do a()z) Wt +t) . (310)
’ ' ' pP\w " t " t
— BT, IT,, IT,, >jdw%4c 3(%)0 (tl +§j

If a=c and b=d, we can recast Eq. (3.10) as

abcdef tz 't I d 0) 2 K abcder NL (a’)cﬂ(tz )(C "(tl)+ C”(tl +1, ))

+ kabcdef ,AN (a)) 4C”3(%jcﬂ(t1 + %)}
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where the intensities of the nonlinear polarizability and anharmonicity are now denoted by
Kapoger v (@) @0 Kypoger an (@) , Tespectively. As is illustrated below, K w (@) and

K apeder an (w) can be evaluated quantitatively from the experimental and simulation data with

use of the double Fourier transformation of the response function defined by

Isa(ggdef (a’z ' 0)1) = _[: dt; sin (a)ltl )J:O dt, sin (a)ztz )Rzgic):def (tz ' tl)

=Im {[: dt,e'" Im {[: dt,e =R (t,, tl)}}

The substitution of Eq. (3.11) into Eq. (3.12) leads to the expression without tensor elements

(3.12)

as

I3(5)(6"2’0)1) oc Ida’ pa()a;) {kNL(a))(ﬁO,NL(a)Z’a)l; a))+ Isl,NL(a’z » O a’)+ §2,NL(a)2’a)l; a))) (3.13)

+Kay (a))(RO,AN (@, 05 0)+ §1,AN (@, 05 0)+ §2,AN (@, @; a)))}

where
Row (@, @;0)= % (o w()f)ir ;?))(222 ) (3.14)
Ry (@, ;)= (o ar s 727[(602 ) (3.15)
e
Ro i (@, @5 0) = g Too wgf)l;f)izzz ) (3.17)
Rl @ )
and
o o

If we set p(w)=5(w—w,), the signal consists of two peaks centered at @, =@, =@, and

o, =0,/2=0, as
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~ 1 1 1 2
chgz(wz'wl)ockm(wa)( 2((0)2 2 2 +E.(a)2—20)a)2+472]

(3.20)

P - S S
" a}(a)l_a)a)2+7/2 (wz_wa)2+72 2 (w2_2a)a)2+472
In a real system the spectral distribution p(a)) may not be a delta-function, and the terms

such as

w p(a)) (0)1 - a))(a)z - a))
ot oo rr N 77) (421

can also make a contribution to the spectra. Therefore the profiles and positions of peaks are
slightly displaced from those predicted by Eq. (3.20). In the case that p(a)) has a Gaussian

like profile, however, the contributions of Eq. (3.21) to the spectral volume centered at

o =~ o, isnegligible because we have

Wy +A® W+ A® p(a)) (Cl) _a))(a) _a)) -
b do [do”S ((wl—a))21+ x X(ajz i oee MO

where Aw represents the spectral width. If a frequency-resolved spectrum obtained from

either the experiments or simulations is expressed as

~

R(S)(wz’wl): Ii‘(5)(6’)2 ~ 0,0, % 0,)+ Ii‘(5)(6"2 ~20,,0,~ @,), (3.23)

obs obs obs

the contributions from the nonlinear polarizability and anharmonicity for each molecular

motion can be evaluated through the following equation,

Kan (a)a) - |$(5)(a)a,a)a)— 2§(5)(20)a’a)a)

obs obs

Ky (wa) B IPi(g’)(c‘)ax’a)a)'i' 2§(5)(2wa’wa) .

obs obs

(3.24)

We now consider the method to separate the peak near o, =@, =@, from other peaks, for
example, near @, = w,/2=w,. If R (w, o)-RE(w,®,) is calculated, Egs. (3.15) and
(3.18) vanish because of the symmetry with respect to o, and , for any p(a))
Moreover, by using R)(w,,a)-RE)(w,®,), we can remove the cross peaks which often
overlap with the peak at @, = w,/2 in a multimode system. The volume of each peak can be
measured accurately as illustrated in Secs. 3-3 and 3-4. Hereafter, we discuss abcd = zzzz

and abcdef = zzzzzz tensors in the response functions, and drop the suffixes for simplicity.
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3-3. Analyzing the Two-dimensional Signals of Lennard-Jones
Systems

Using 2D frequency domain maps, we can also clarify the peaks more clearly than 1D

frequency domain plots. In this section, we apply our method to the fifth-order 2D Raman
signals of the LJ potential system, which were well investigated by Ma and Stratt, [12][13] to
evaluate the consistency of the ratio k,, /k,, . At the same time, we demonstrate a way to
judge whether the spectral peak is composed of a single mode or multi-modes.

We calculate the fifth-order Raman signals in the LJ potential system by the equilibrium
and non-equilibrium hybrid method.[11] Then, we transformed the signals from time domain
to frequency domain with a Welch window function. MD simulations are carried out with 108
LJ atoms. The same potential, polarizability, size of the simulation box, and time step used in
these simulations are used as those of Ma and Stratt’s simulation.[12] [13] The forces by LJ
potential and DID interaction are smoothly cut off at the half length of the simulation box
with the switching function. In the non-equilibrium calculations, the system is irradiated by
laser pulse pairs with the strength of 5.0 V/A. The third- and fifth-order response functions are
calculated by averaging over 4,000,000 configurations.

The 1D frequency domain plot of the third-order response function, ﬁ(s)(w), is shown in
Fig. 3.1. We found that the signal may be fit by either one Lorentzian peak or three Gaussian
peaks, which are depicted in Fig. 3.1(a) and (b), respectively.[30] Figures 3.2(a) and (b) show
the 2D contour plots in frequency domain, R®(w,,,) and R®(w,,e,)-R® (0, ®,),
respectively. These figures indicate that the dynamics in the LJ potential system is governed
by one mode. Thus, §(3)(w) should be fit with a single Gaussian peak as Fig. 3.1(b), and the
frequency for the translational motion is found to be about 19cm™.

As shown in Fig. 3.2(b), R®(w,,@,)-R"® (w,,®,) allows us to specify the peak near
o, = w,/2=19cm™ more easily than R®(w,,w,) does. The calculated ratio of the spectral
volumes, R®(w, = w,/2)/R®(w, = w,), is —0.30, which gives us k,, /k, =4.0 for the
translational mode. In fact, if we adapt this ratio and calculate the diagonal element on

t,=t, and t, axis elementon t, =0 of Eq. (3.10) according to the NM expressions using

the third-order response function R®/(t) as
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t
RO(t,t) o kNLIdtG R®(3t)+ R(3)(2t)—%R(3)(t)j

0

(3.25)

t
+Ky [dt(-3R(3t)+ 6R)(2) - 3RE(1))

0

and

t t
RO(,0)oc ky, [ AtRE(2t)+ Ky (- R (21)+2R(1)), (3.26)
0

0
we can well reconstruct the original fifth-order response function in the short time region as
plotted in Fig. 3.2(c). The large deviations of Egs. (3.25) and (3.26) from MD simulations
over 200fs are attributed to the use of the NM expression instead of BO expression.
Moreover, the agreement of these results with Fig. 7 in Ref. [13] strongly supports the ability

to evaluate the ratio between anharmonicity and nonlinearity from the present our method.

Response Function

_____ IR T I T S I S |

0 20 40 60 80 100 L1} 20 40 80 100

frequency (am™") frequency (ae™")

Figure 3.1. The third-order response functions §(3)(a)) are depicted as the solid line. (a) The curve
fitted with one Lorenzian peak and (b) the curves fitted with three Gaussian peaks are plotted as the dashed

lines.
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Figure 3.2. (a) The fifth-order response function R®(w,,®, ), and () R®(w,,»,)-R® (0, ®,) for
the LJ system at T = 220K are depicted. In Fig. (c), The MD results along t, =t, (solid line) and
t, =0 (dotted line) are compared with the signals calculated from Egs. (3.25) (solid line with circle

markers) and (26) (dotted line with circle markers), respectively.

The temperature dependence of the ratio k,, /k,, is investigated at T =95, 120, and
160K for the supercooled liquids and at T =220 and 260 K for the normal liquids under
same density, and is shown in Fig. 3.3.[35] In Fig. 3.3, this ratio seems almost constant in
both phases, which means that fifth-order response function cannot capture the qualitative
change between both liquids. Although the mobility is changed in general between both

liquids, its effect does not appear in short time scale of the present simulation.
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Figure 3.3. The ratio of k,, /k,, for the LJ potential system is illustrated as the function of temperature.

The dashed line is a guide for eyes.

3-4. Analyzing the Two-dimensional Signals of Soft Core Systems

We investigate the soft-core potential system defined by the potential,

U(r)= {%}6 + A&T +B, (3.27)

where & and o are the potential parameters, and the constants A and B are chosen to

connect the force and potential smoothly at the cutoff r,. Thus A and B are given by
3/2¢(o/r,)° and —5/2-¢(a/r,), respectively. We carried out the MD simulation in
reduced units. A temperature multiplied by Boltzmann constant is changed from solid phase
(KT =0.14,0.155) to liquid phase (kT =0.20,0.215,0.23) as a parameter with fixed density.
The other conditions on the simulation are the same as the previously study[7] in which we
found that the fifth-order Raman signals are sensitive to the difference of the phases, while the
third-order Raman signals are not. The method developed in this study sheds light on the
relative intensities of the nonlinear polarizability and anharmonicity on the fifth-order signals.

The 1D time domain and frequency domain plots, R®(t) and R®(w), 2D time domain
and frequency domain maps, R®(t,,t,) and R®(w,,e,), and R®(w,,0,)-R® (0, ®,)
at kT =0.14 are depicted in Figs. 3.4(a), (b), (c), (d), and (e), respectively, and at
kKT =0.20 are shown in Fig. 3.5(a), (b), (c), (d), and (e), respectively. Figure 3.4(b) exhibits a
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similar profile to Fig. 3.5(b) and the 1D frequency domain maps in the other temperatures.
These signals are also similar to the LJ case depicted in Fig. 3.1. On the other hand, we can
clearly see the difference of 2D signals in the soft-core and LJ cases; the 2D signals of
soft-core potential system consist of two modes. The frequency of two modes are found to be
o, =6.5 and @, =16, respectively. The modes of @, and @, are thought to be from
delocalized vibrational motion for each atom and high frequency localized mode,

respectively.[36]

Responsge Function

Figure 3.4. (a) The third-order response function 5(3)(a)) and the fifth-order response functions, (b)
R®(w,,) and () R (w,,0,)-R®(w,®,), for the soft core system at kT =0.140 are
depicted. (d) The time domain 2D maps R(s)(tz,tl) are shown for comparison (see reference 9). The
curve fitted to the third-order spectrum with two Gaussian peaks is presented as the dotted line. All figures

are in reduced units.
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Figure 3.5. (a) The third-order response function 5(3)(60) and the fifth-order response functions, (b)
R (w,,0,) and (¢) R®(w,,,)-R® (@, ®,), for the soft core system at kT =0.200 are
depicted. (d) The time domain 2D maps R(S)(tz,tl) are shown for comparison (see reference 9). The
curve fitted to the third-order spectrum with two Gaussian peaks is presented as the dotted line. All figures

are in reduced units.

The relative intensities of the nonlinear polarizability and anharmonicity for @, and o,
are determined from the spectral volumes of 2D frequency domain maps as summarized in
Table 1. The calculated ratios for each mode are visualized in Fig. 3.6 for k, (e, )/K . (@),
K (@0,)/Kan (@), and K (@, )/K 4 (@0, ). All ratios except for the nonlinear polarizability at
@, show almost proportional to each other at any temperature, while the ratios between
Ky (co,) and the other intensities exhibit a specific phase dependency as shown in Fig. 3.6.
Thus, we may consider that the nonlinear polarizability of the delocalized mode is

dramatically changed, whereas the high frequency localized mode is not changed as long as
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the fifth-order Raman spectra can capture. This consideration indicates that the difference of
the anti-symmetric integrated response functions between solid and liquid phases [7] is
induced by the nonlinear polarizability of ,. In addition, the anharmonicity makes larger
contribution to the fifth-order signal than the nonlinear polarizability for the localized mode,

while makes smaller contribution for delocalized mode as shown in Table 1.
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Figure 3.6. The ratios of Ky (@ )/Ku () (square), K, (@, )/ku (@) (triangle), and
Kan (aJh )/ Ky (aJh) (circle) for the soft-core potential system are illustrated as the function of temperature.

All lines are guides for eyes.

Table 1; Relative ratios between anharmonicity of potentials

and nonlmearlity of polarizability

temperature (6]} 10
kT AN NL AN NL
0.140 26 -0.24 0.25 1.0
0.155 25 -0.21 025 1.0
0.200 20 -0.46 034 1.0
0.215 22 -0.82 035 1.0
0.230 21 -097 039 1.0
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3-5. Conclusion

In this section, we proposed the method to evaluate the contributions from the nonlinear

polarizability and anharmonicity of potentials utilizing the analytical expression of 2D signals
in frequency domain. The ratio between two contributions was evaluated from the volumes of
spectral peaks. With 2D Raman frequency domain maps, we could easily separate
contributions from different vibrational modes, which was difficult with 1D approach.

Demonstration to apply our method to the simulation results for LJ potential system
indicates that primary contribution of molecular motions to the signal comes from only a
translational mode at 19 cm™. Moreover we evaluated the ratio between nonlinear
polarizability and anharmonicity as k,, /ky =4.0 . Good agreement is obtained in
comparison of the NM expression of the fifth-order response functions using this ratio with
the data of Ma and Stratt,[13] which supports the consistency of our method.

We also examined our method to analyze the signals of the soft-core potential system at
various temperatures. In our previous study,[7] it was found that the 2D time domain Raman
signals exhibited a clear difference between the solid and liquid phases, but the origin of this
difference could not be identified. The present method shows that the different fifth-order
Raman signals between both phases resulted from the change of the mode of @, through the
nonlinear polarizability. At the same time, the phase transition was shown to have little effect
on the mode of @,. We can conclude from the fifth-order response function that the
dynamical change between the solid and liquid phases is characterized as not high frequency
localized mode but delocalized motion in soft core potential systems. Moreover when our
attention is paid to the contributions to the fifth-order signal, we can find that the nonlinear
polarizability and anharmonicity of potential are dominant for the localized and delocalized

modes, respectively.

3-6. Appendix: Derivation of the Anharmonic Contribution in Morse
Potential System

The contribution of anharmonicity to the fifth-order Raman signal was first evaluated by

Okumura and Tanimura using Feynman rules for anharmonicity additive potential.[3] Then,

45



by using the adiabatic instantaneous normal mode theory, Ma and Stratt derived the same
expression as Okumura and Tanimura.[13] Here, we show the same expression can be
obtained from the perturbative calculations by assuming a Morse potential system defined by
Eqg. (3.8). When the correspondence of the anharmonicity additive potential

V(Q)=%q2(t)+%q3(t) (3.28)

with the Morse potential is taken into consideration, we can obtain the relations,
a):ﬂ\/m and g, =-6Dg°, by expanding the Morse potential with respect of q. We
may evaluate the fifth-order response function from the solution of the Morse potential,
because the contributions of the nonlinear polarizability and anharmonicity over A° are
negligible at small q.

The equation of motion for the Morse potential system can be solved analytically and the
coordinate and momentum are given by

1+1-C, sin[ 2DC1,6‘t+C2J

_1 H
q(t)= 5 In . , (3.29)

and

J1-C, cos( 2DClﬁt+C2]

p(t) = y24DC, ad , (3.30)
1+,1-C, sin( 2DC1,Bt +C2J
7

where g is the mass of molecule, and C, and C, are the integral constants. When we

expand Tayler series up to the first-order around the bottom of the Morse potential, the

q(t):%[ﬁsin(\/?ﬂwczj—l_zcl (2+sin2[\/?ﬂt+CZD+~} (3.31)
o(t)= m(mcos(\/?ﬁt +C2J— 1_2C1 sin{Z[\/?ﬂt +C2B+---] . (3.32)

Using these solutions, we can calculate the stability matrix analytically as

position and momentum are written as

and
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Thus
ay (t):ism(\/iﬂ[-i-czj, (3.34)
B U
()= 1;,;:1 (_2+Sin2(\/?ﬂ[+czjj, (3.35)
MH ﬂ TDu sm( ﬂt} (3.36)
and

M, (1) = Zj%”[\r A, },.n (\F ﬂt] (337)

The substitutions of these equations into Egs. (3.3), (3.4), (3.5), and (3.6) give us the

expression for the anharmonicity of potentials as
RO (t,.t,) = L <H”H I,
abcdef \*2 "1 ab™“cd

] (] P )
b o TN

When the relations o= f,/2D/u and (1-C,)/D = uw’q?/2=kT/2 are used, Eq. (3.38)

becomes
R;EZdef (tz , tl) oc <Hng’cdH;f %Sin(a’tz )Sin(a)tl +ot, )>
+<n;bngdn;f izsin(wtz)sin(mtl)> . (3.39)
w
—<H;bH’cdH;f %sins(a)tz)sin(a)tl + 24, j>
0] 2
The expression for the anharmonicity additive potential is obtained by setting g, =—-6Dj°,

which has the same form as the expressions obtained by Okumura and Tanimura and by Ma

and Stratt.
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Chapter 4

TWO—DIMENSIONAL INFRARED
SURFACE SPECTROSCOPY FOR CO ON

CU(100):

DETECTION OF INTERMOLECULAR
COUPLING OF ADSORBATES

4-1. Introduction

The vibrational energy dissipation and intermolecular coupling of CO on various metal

surfaces have attracted much attention and is well understood.[1] The CO stretching mode
lifetime can be explained by an electron-hole (e-h) pair creation mechanism due to
antibonding 27" orbital of the CO molecule.[2] The frustrated CO rotational mode have
very short lifetimes dominated by the same mechanism.[3] [4] [5] Chemical shifts for the
frustrated rotational mode are different for Cu(100) and Cu(111), [6] [7] which reflects the
sensitivity of the adsorbate dynamics to the electronic structure of metal surfaces due to e-h
pair creation. The stretching and frustrated rotational modes are anharmonically coupled to
each other.[8] [9] At the same time, the CO frustrated rotational and translational modes are
coupled.[10] These intermode couplings govern the dynamics of adsorbates on metal surface.

Dipole-dipole interactions play an important role on the geometry and lateral hopping of
CO on Pd(100) and Pd(110).[11] [12] Researchers have tried to control lateral CO
motions.[13] [14] [15] The lateral interactions make local ordering of adsorbates and prevent
the formation of long range ordered structure at low coverage.[16] Particular attention has

been paid to the overtone and combination bands of CO on Ru(001). Broadening of the CO
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stretch overtone rapidly grows with temperature due to thermally activated decay of
two-photon bound state into single phonon states.[17] Large anharmonicities due to lateral
coupling lead to the formation of localized two-phonon bound states.[18] Thus, the
investigation of the intermolecular couplings of CO adsorbed on metal surface is crucial for
revealing the underlying mechanism of the surface dynamics.

In linear spectroscopy the couplings between intra- and inter-adsorbate interactions are
measurable only in terms of chemical shifts. In addition, linear spectroscopy is unable to
distinguish homogeneous broadening from inhomogeneous broadening.[19] [20] To overcome
these limitations, multidimensional spectroscopic techniques have been proposed and carried
out to obtain information on surface dynamics. Guyot-Sionnest combined the photon echo
and sum-frequency generation (SFG) techniques [21] [22] to extract the homogeneous
linewidth from the inhomogeneously broadened Si-H vibrations on Si(111) surface.[23] Cho
proposed infrared-infrared-visible (IR-IR-VIS) SFG [24] and Bonn et al. determined the
intermolecular coupling strength of dipole-coupled CO on Ru(001) using this SFG.[25] [26]
However, IR-IR-VIS SFG is a third-order nonlinear optical process and is not surface-specific.
Belabas and Joffre demonstrated two-dimensional (2D) VIS-IR spectroscopy in AgGaS,.[27]
Voelkmann et al. combined four-wave mixing with the second-harmonic generation to
monitor the temporal evolution of photoexcited one- or two- photon coherence.[28]

In this study, we propose to apply 2D IR surface spectroscopy which utilizes the SFG of
two independently tunable IR beams to an admixture of C*?0 and isotope labeled C*30*® on
Cu(100). The pulse sequence and energy diagram of 2D IR surface spectroscopy is presented
in Fig. 1 with those of 2D Raman spectroscopy. 2D IR surface spectroscopy has two
independent time axes retaining the surface-specificity, and is related to the second-order

response function,

R0 0= 1] ) O ()

where /,za(t) is the dipole moment at time t in a direction.[19] [29] [30] [31] t, and t,
are the time intervals between the first and second IR pulses and between the second pulse

and the signal, respectively. Since the fifth-order Raman response function,
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8 (t)=[ 1 (1,00, 1), 42)

where I1,,(t) is the polarizability at time t in ab tensor, has the same form as the
second-order IR response function Eq.(4.1), similar formulism and simulation strategies
developed in 2D Raman spectroscopy [20] [32] [33] [34] [35] [36] [37] [38] [29] [40] [41]
[42] [43] are applicable to 2D IR surface spectroscopy. We calculate 2D IR surface signals by
means of molecular dynamics (MD) simulation based on the stability matrix formalism [33]
[35] [37] [40] to investigate roles of anharmonic coupling.[34] In third-order IR spectra, **C
and 20 isotope substitution has been used to change the frequency [44] [45] [46] [47] [48]
[49] and the cross peaks between two amide-1I"” modes were observed.[49] These suggest the
possible detection of isotopic effects of adsorbates in 2D IR surface spectroscopy.

The aim of the present article is to explore a possibility of 2D IR surface spectroscopy to
detect intermolecular anharmonic couplings between CO and isotopic CO stretching modes
on Cu(100) at different temperatures. In Sec. 4.2 details of the MD simulation are explained.
The temperature dependence of the first-order response functions of IR spectroscopy and the
second order response functions of 2D IR surface spectroscopy are discussed in Sec. 4.3 and

Sec. 4.4, respectively. Finally, concluding remarks are given in Sec. 4.5.
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Figure 4.1. Pulse sequences (left) and typical energy diagrams (right) for 2nd-order IR surface
spectroscopy and 5th-order Raman spectroscopy. Solid and dotted lines denote the transition

of bra and ket vectors, respectively.
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4-2. Molecular dynamics simulation

In 2D Raman spectroscopy researchers have calculated the classical limit of the fifth-order

Raman response function
1 :

Re(lg():def (tz ’tl) = _ﬁ<{nab (tz )! I, (O)}P_B,Hef (_ L )> ! (4.3)
where {--},., k,and T denote the Poisson bracket, boltzmann constant, and temperature,
respectively.[33] [35] [36] [37] [38] [39] [40] [41] [42] [43] The response function Eq. (3)
gives direct information on anharmonic dynamics [39] [43] and coherent dynamics through
the stability matrix.[39] [40] Similarly, in 2D IR surface spectroscopy, it is necessary to
calculate the classical limit of the second-order IR response function

1 .
R&) (tZ’tl) = _E<{ﬂa (tz )’ Hy (O)}P.B.luc (_ t1)>

1 <Z Oua(ty) 00,(t,) 014, 0) )>

kT \ 4 2q,(t,) ap,(0) aq,(0)"

(4.4)

in order to describe the surface dynamics and reveal the dynamical intermode correlation. We
calculated the 2D surface IR signals by means of the MD simulation based on the stability
matrix formalism, where calculation of stability matrix g, (t,)/@p,(0) needs the 3N
trajectories for one initial configuration, where N is the number of particles.

The following potentials were employed in our MD simulation; the Cu-Cu interaction
potential developed by Wonchoba and Truhlar, [50] the Cu-C-O three-body potential and C-O
intramolecular potential by Tully et al., [5] and the CO-CO inter-adsorbate potential by van
der Pol et al. [51] and Janssen et al..[52] The inter-adsorbate potential included Van der Waals
terms and electronic terms representing dipole-dipole, dipole-quadrupole, and
quadrupole-quadrupole interactions. The effects of e-h pair creation was included as
stochastic forces and frictions whose parameters are made by Tully et al..[5] Similar MD
simulations for CO on Cu surface have been carried out to investigate the desorption of CO
from Cu(100) enhanced by neighbor CO molecules [53] and adsorption of CO on stepped
surface of Cu(211).[54]

Our simulations were based on classical equations of motion for CO interacting with 4

surface layers with 16 Cu atoms in each layer. The bottom layer was rigid and interacted only
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with the nearest layer. Since the CO intramolecular force was much stronger than the other
forces, we employed the RESPA algorithm [55] summarized in the Appendix. The time
evolution was carried out for t, =t, =1.6 ps with AT =1fsand At =0.1fs, where AT and
At are the longer and shorter time steps defined in the RESPA. t, =t, =1.6 ps is not enough
to observe the linewidth of CO stretching mode in 1D plots or 2D maps, but is sufficient for
the dynamical coupling between adsorbates. The Langevin equations were solved using
Brunger-Brooks-Karplus algorithm.[56] To calculate the optical response, the dipole moment
u(t) was assumed to be

plt)= py + pr(t), (4.5)
where g, and g, denoted the permanent dipole moments and the first derivative of the
dipole elements as the function of CO distance r(t). By using Gaussian03 package, the

1 were determined from the

parameters p, =0.1326 Debye and y, =9.098 Debye
optimized structure of free CO and OCCu with fixed 13 Cu atoms, respectively.[4] The
optimized geometries and dipole moments were calculated at the B3LYP/6-31G(2d,p) level of
the density functional theory.

The dipole moments for these high frequency modes are primarily determined by the
intramolecular interactions. Therefore, the first derivatives of CO dipole moments with
respect to Cu atoms degrees of freedom are negligible compared with those with respect to C
and O atoms, making it unnecessary to calculate the stability matrix of Cu atoms.

In 2D Raman spectroscopy of pure liquids, non-equilibrium MD (NEMD) simulations are
computationally less expensive than MD simulations based on the stability matrix
formalism.[36] [42] This is because, for second-order IR or fifth-order Raman response
functions, calculation of stability matrix requires 3N trajectories, while only 4 trajectories
are needed in NEMD simulations.[42] However, when the simulations of multidimensional
spectroscopy are directed to specific vibrational modes such as the CO vibrational mode of
amide | in aqueous solution, [49] the above approximation requires only calculation of the
stability matrix with respect to C and O atoms composing the CO vibrational mode, and the
atoms around them if needed. It should be stressed that the above approximation may make
the MD simulations based on the stability matrix formalism computationally less expensive

than the NEMD.
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The 2D signals were calculated by averaging over 1,500,000, 1,200,000, and 700,000
initial configurations for 60K, 100K, and 150K, respectively. Numerical convergence in time
domain data was confirmed by checking the anti-symmetric integrated response functions
which characterized the behavior of stability matrix [40]

Alt, t) = 2(T(E)I1(0), T1(=t)j, 5 ) — (TORIT(0). T1(= )} 5 ) — ({T1(t). T1(0)}, 5 T1(0)) - (4.5)
The anti-symmetric integrated response functions for 60K, 100K, and 150K are shown in Fig.

4.2.

Response Function

0.0 0.4 08 . 12 1.6

time (pg)
Figure 4.2. Anti-symmetric integrated response functions of second-order IR response functions

at 60K, 100K, and 150K. Each plot is normalized at the maximum of the data.

4-3. Linear Response Function

The MD simulations of the linear response functions were carried out for four COs and

isotopic COs on Cu(100) at 60K, 100K, and 150K. The spectra displayed in Fig. 4.3 show the

CO stretching frequencies of CO and isotopic CO were 2179cm™ and 2123cm™ at 150K,
respectively. The corresponding frequencies for one CO and isotopic CO on Cu(100) are
2175cm™ and 2120cm™ . This shows blue shift due to the electronic interaction, in
satisfactory agreement with the experiment.[6]

The peak positions are independent of temperature. Indeed temperature has influence on the

linewidth in the experiment, but the linewidth is not precisely reproduced in our simulation as
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stated in the previous section. Although the dynamics may be activated by increasing
temperature, it has little effect on the CO stretching frequency. The spectra are not affected by

the dynamics of neighbor adsorbates.

150K

100K

Response Function

@
o
=
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frequency (em™)
Figure 4.3. Linear spectra at 60K, 100K, and 150K. Each plot

is normalized as the area is same at each temperature.

4-4. Two-dimensional Response Function

One of the merits of the 2D techniques is their capacity to identify signals corresponding to

specific Liouville space pathways.[19] Here, we focus only on CO stretching modes. The
double-sided Feynman diagrams corresponding to the peaks on the areas of the fundamental
tone area (2050cm™ <@, < 2250cm,2050cm™ < o, < 2250cm‘1) and overtone area
(2050cm ™ < @, < 2250cm™,4100cm™ < w, < 4500cm™*) are sketched in Fig. 4.4(a) and (b),
respectively.[30]

The calculated 2D signals in the fundamental tone area at different temperatures are
depicted in Figs. 4.5. The main peaks are located at
(@, ,)=(2123cm™,2123cm™ ), (2123cm™,2179cm ™ ), (2179¢m ™, 2123cm ), (2179cm™,2179cm ™).
Since the times t, =t, =1.6 ps are shorter than the relaxation time of signals, we observe
weak sidelobe peaks along @, =2123,2179cm™ and @, = 2123,2179cm™.

The overtone transitions of a single oscillator such as |0,0><0,0]—|2,0><0,0] make a

larger contribution to the diagonal peaks than the transitions due to the inter-adsorbate
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couplings such as |0,0><0,0|—/11><0,0], where |i, j> represents the combination of
ith excited state of CO and jth excited state of isotopic CO. Thus, the insensitivity of
diagonal peaks to temperature indicates that the potential anharmonicity with respect to single

CO stretching mode g,,, = 63V/ ar’ is unchanged. The volumes of the cross peaks are at
most about one tenth of those of the diagonal peaks.

lg> <g| lg=> <g] lg= <g|
N1 L Ny

lel= <g| le2> t
. lel>f-- -1<8l ¥
lel> <g| el> 4
g><gl lg><g| 5> <l
(a1) (a2) (b)

Figure 4.4. Double-sided Feynman diagrams of 2D IR surface response function in CO on Cu(100)
corresponding to the signals (a) in the fundamental tone area and (b) in the overtone area.
|g>, |el>,and |e2 > represent ground state, one quanta excited states including |1,0 > and
| 0,1 >, and two quanta excited states including | 2,0 >, |11>,and |0,2 >, respectively.

White and black circles show once and twice interactions between laser field and system.
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Figure 4.5. Imaginary parts of 2D signals of the fundamental tone at (a) 60K, (b) 100K, and (c) 150K.

Each graph is normalized at maxima peaks.
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The cross peaks representing anharmonic intermolecular couplings between CO and
isotopic CO change significantly at 60K, 100K, and 150K. The intermolecular couplings are
caused by intermolecular anharmonic potentials composed by different CO stretch modes.[24]
At least, three primary causes for inter-adsorbate couplings are possible; induced dipole
moments on Cu surface (e-h pair creation), the couplings through surface Cu atoms (phonon
effect), and electronic interactions between CO and isotopic CO. The first mechanism is
excluded in our simulation because the effect of e-h pair creation is expressed by the frictions
and stochastic forces [5] and cannot produce the correlation between CO and isotopic CO.
Therefore, we consider the latter two possibilities. To examine the second mechanism, we
calculated the 2D signal at 150K by not allowing motion of the Cu atoms. The results shown
in Fig. 4.6 resemble to the Fig. 4.5(c), which indicates that the phonon effect is not dominant
for inter-adsorbate couplings. To evaluate the third mechanism, we calculated the 2D map at
150K with the electronic charges on CO to be zero, and illustrated it in Fig. 4.7. The cross
peaks at (o, ®,)= (2123cm‘1,21790m‘1) in Fig. 4.7 are much weaker than those in Fig. 4.5,
and the phase of the cross peaks at (w,,,)= (21790m‘1,2123cm‘1) also changes between
two figures. The inter-adsorbate interactions are primarily governed by electronic interactions
which are about 10 times stronger than Van der Waals interactions. Therefore, the temperature
dependence of the cross peaks may be attributed to electronic interactions.

Since the electric charges are fixed in our simulation, the electronic interaction strength
depends on the distance between COs. In Fig. 4.8, we show the radial distribution functions
(RDFs) of C-C, O-0O, and Cu-Cu. The C-C and O-O RDFs similarly expand with temperature
in contrast to the Cu-Cu RDF, indicating that temperature activates the frustrated rotational
mode. The nonlinear dipole moments and anharmonicity of potentials give non-vanishing
elements in the second-order IR response function as in the fifth-order Raman response
function.[32] The nonlinearity, however, plays minor role on the second-order response
function compared to the anharmonicity. In contrast, both give comparable contributions to
the fifth-order Raman response function.[38] [29] [41] [30] Based on these arguments, we
focused mainly on the electronic interactions through the dynamics of CO and its potential
anharmonicity. Our model is simplified to extract the lateral dipole-dipole couplings on

surface; the electric charges —q on adsorbates and +q on metal surface are set and the
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Figure 4.6. Imaginary parts of 2D signals of the Figure 4.7. Imaginary parts of 2D signlas of
the fundamental tone at 150K with Cu atoms fixed. fundamental tone at 150K without electronic
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Figure 4.8. Radial distribution functions of (a) Cu-Cu,

(b) C-C, and (c) O-0 at 60K (solid) and 150K (dotted).

angles between dipole moments and vertical line, 6, and 6,, are selected as variables (Fig.

4.9). The inter-adsorbate potential of a right side adosorbate is given by

59



2

_1 g
4re ((R—rlsin 6, +1,sin6,) +(r,cos, —r, cos&z)z)v2
1 q |
4re ((R +1,sind,f +(r,cos 6, ) )‘/2

(4.7)

where R is the distance between surface atoms and r, is the distance between the ith

adsorbate and the corresponding surface atom. The strengths of the cross peaks are
proportional to the potential anharmonicity for different normal modes g,,, 563\//6r16r22.
[24] [32] [34] We plot g,,, in Fig. 4.10 as the functions of ¢, and &, with R =3.6A,
rr=r,=19A , and rq=1Debye for simplicity. It is found that g,, increases
monotonously as 6, — @, increases. It is found that g,,, increases monotonously as 6, — &,
increases. The 6, — 6, distribution for all adsorbates is shown in Fig. 4.11. This indicates that
the rotational dynamics of adsorbates becomes active for higher temperature, which leads the
wider 6, —6, distribution. The wider 6, —6, distribution increases the anharmonicity of

potentials g,,, and changes the phase of the cross peaks followed by Fig. 4.10.
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Figure 4.9. The model with two dipole moments. A and S denote the adsorbate and surface atoms.

R

Figure 4.10. Anharmonicity of potential g,,, as functionsof 6, and 6, .
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Figure 4.11. cos(@, —6,) distribution when Cu-Cu distance is less than 3.8A.

The distributions at 60K and 150K denote solid and dotted lines, respectively.
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Figure 4.12. Imaginary parts of 2D signals of the overtone at (a) 60K, (b) 100K, and (c) 150K.

Each graph is normalized at maxima peaks.

Finally, the calculated 2D signals in the overtone area at different temperatures are shown
in Figs. 4.12. When Figs. 4.5 and 4.12 are compared, we can find that the cross peaks of Fig.
4.11 are much smaller than those of Fig. 4.5. This can be explained by the double-sided
Feynman diagrams in Fig. 4.4. The cross peaks in the fundamental tone area arise from, for
example, the optical process |0,0><0,0/—/10><0,0/-/01><0,0/—]0,0><0,0] in
Feynman diagram Fig. 4.4(al). Similarly, the cross peaks in the overtone area arise from, for
example, the process |0,0><0,0]—|1,0><0,0|-|11><0,0]-|0,0><0,0| in Fig. 4.4(b).
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Since the one quantum process |1,0><0,0/—{11><0,0] and two quanta processes,
1,0 ><0,0/—|01><0,0| and |11><0,0]—|0,0><0,0], require the couplings between CO
and isotoped CO and have much less transition dipole moment than the one quantum
processes, |0,0><0,0/—|1,0><0,0| and |01><0,0|—]0,0><0,0[, the cross peaks in the
fundamental tone area are bigger than those in the overtone area. Moreover, the diagonal
peaks in the overtone area have opposite signs as those in the fundamental tone area. As was
shown in the fifth-order Raman spectroscopy, [41] the peak intensities of the signals in
frequency domain 2D maps are determined by the interplay between the nonlinear coordinate
dependence of dipole moments (NL) and the anharmonicity if potential (AN); NL+AN
contributes to the diagonal peaks in the fundamental tone area, while NL-AN contributes to
the diagonal peaks in the overtone area. Since the contributions of NL to 2D signals are much
smaller than those of AN, the signs of the diagonal peaks in the fundamental tone and
overtone areas become positive and negative corresponding to the contributions AN and —AN,

respectively.

4-5. Concluding Remarks
We carried out the MD simulation for CO on Cu(100) to calculate the signals of 2D IR

surface spectroscopy for various temperatures. Our MD simulation was based on the stability
matrix formalism and e-h pair creation was included as a stochastic process. When
temperatures were set to be 60K, 100K, and 150K, the cross peaks were significantly changed
in the fundamental tone areas of 2D frequency domain maps, while the appreciable difference
could not be found in linear response functions. Comparison of the signals from the MD
simulations without electronic interactions and with surface Cu atoms fixed indicated that the
electronic interactions were the primary cause of the temperature dependence of the cross
peaks. To explore this point, we employed the simple model with two dipole moments whose
configurations were characterized by the angles between dipole moments and vertical line 6,
and 6, . It was found that the increase of 6, —6, changed the anharmonicity from negative
to positive signs. In fact, wider 6, — 6, distribution with higher temperature was observed in

our simulation. The frustrated rotational mode activated by increasing temperature changed
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the anharmonicity of potentials and, consequently, the phase of cross peaks.

We further compared the signals in the overtone area with in the fundamental tone area.
The cross peaks in the overtone area were much smaller than those in the fundamental tone
area. This was because the couplings between CO and isotoped CO were required twice in the
optical process corresponding to the signals in the overtone area, while there was one
coupling in the optical process in the fundamental tone area. Moreover the phases of the
diagonal peaks were changed between in the fundamental tone area and in the overtone area.
This was explained from our previous study of 2D Raman spectroscopy, the anharmonicity of
potential with respect to the single CO stretching mode gave positive and negative
contribution to the fundamental tone and the overtone, respectively.

Finally, we make the following two points. First, the e-h pair creation mechanism plays a
major role in surface dynamics such as pure dephasing on metal surface.[57] and theoretical
descriptions of e-h pair creation are well tested.[58] [59] Although the effect of e-h pair
creation was treated by using the friction and stochastic forces in this study, it is challenging
to simulate the influence of e-h pair creation on the inter-adosorbate couplings. Second, some
studies have shown the capacity of 2D IR spectroscopy to reveal the intermolecular
interactions by probing the intramolecular interactions. [60] [61] [62] [63] For example,
Zheng et al. probed the equilibrium dynamics of phenol complexation to benzene in a
benzene-carbon tetrachloride solvent mixture, [60] [61] and Cowan et al. investigated into the
loss of memory of persistent correlations in water structure. [62]. In this study the temperature
dependence of the inter-adsorbate coupling was discussed by observing the cross peaks of the
CO stretch. This study demonstrated the same ability of the multidimensional IR

spectroscopies to provide similar information on surfaces as well as in the bulk.

4-6. Appendix: Summary of RESPA

The RESPA was introduced to lower the computation cost of integrating the equations of

motion by separating all forces into short and long range types, F, and F,.[55] These forces
are integrated with different time steps. In one dimensional system, the Liouville operator L

can be rewritten as
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iL =il +iLl, +iL,,, 4.7)

where
iL, = x%, (4.8)
iL, —F (x)a%, (4.9)
and
iL, = F (X)a%' (4.10)

The propagator can then be written
gt = gltwlay 2)[e‘LK (M/2)gilvsMgibic (A/2) 4 O(At3)]n giltu(a2) 4 O(AT3), (4.11)
where At =AT/n.

In our system, the force by the CO intramolecular potential corresponds to F,, while all
other forces are classified into F,. The Liouville operator of the kinetic part can be
decomposed into fast and slow motion parts correspondingto F, and F,, respectively.

il =il +iLy,. (4.12)

Note that L, is dependent on the degrees of freedom of C and O atoms, while L,, includes

the degrees of freedom of all atoms. Since Cu atoms are independent of F_, the time

evolution of Cu atoms can be extracted from the iteration with smaller time step. Thus, we get
g7 = gla(aT gt [ gita(aT/2) 4 (AT ?)

:eiLw(AT/Z)[eiLKs(At/Z)eiLvSAteiLKs(At/Z)+O(Ata)]”eiLK.ATeim(AW)+O(A-|-3)'

Eqg. (4.13) avoiding n times time evolution with respect to the position of Cu atoms

compared with the original RESPA (4.11).

(4.13)

The increase of the atoms independent of the short range forces accelerates the efficiency
of Eq. (4.13). The methodology is useful in the MD simulations ranging from the surface
dynamics to the molecules in the solution in which the solute molecules are treated as rigid
bodies and interacts with the solute molecules. We explain this methodology using the
velocity Verlet algorism which is an example of a second order symplectic integrator. This

methodology is more important for the higher order symplectic integrator method.
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Chapter 5

CONCLUSION

5-1. Quantitative Analyses Beyond Qualitative

Over ten years passed since 2D Raman spectroscopy was proposed theoretically, [1] and

some experimental successes were reported.[2] [3] [4] [5] By using MD simulations the 2D
Raman signals were calculated in Xe, [6] [7] CSa, [7] [8] water, [7] [9] [10] benzene, [11] and
soft core system.[12] When these experimental and simulation results were discussed, one
usually employed oversimplified models such as the Brownian oscillator model.[13] The
discussions and analyses by using these models were qualitative rather than quantitative.
Quantitative analyses beyond qualitative shall be required as the next stage of 2D Raman
spectroscopy to insight into the details of molecular dynamics.

Without navigation tools for 2D maps, it is difficult to compare experimental data or
simulation data with each other. For example, although we can obtain some information such
as peak positions and direction of ridges from the 2D maps, we cannot extract any
information on dynamics as long as the underlying mechanisms of these features are not
revealed. Tthe projection of the 2D maps onto the 1D plots without loss of important
information which characterizes the fifth-order Raman response function is one of the
practical ways to analyze the 2D signals. How we project the 2D maps onto 1D plots depends
on what we want to investigate. In this thesis, we showed two examples: if we want to know
the role of the stability matrix, analyzing the antisymmetric integrated response function is the
best approach.[12] If you want to know the ratio between anharmonicity contributions and
nonlinear polarizability which are the main sources of the 2D Raman signal, analyzing the 2D
frequency-domain map is the best way.[14] Note that the former approach can extract more
dynamical information than the latter.

In chapter 2, we applied these methods to the soft core system and found that even in

femtosecond order ultrafast region 2D Raman signals can capture the difference between solid
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and liquid phases to which the linear Raman spectra are not sensitive. This indicates that 2D
Raman spectroscopy has a possibility to investigate the detailed molecular dynamics and
structures near critical points which cannot be observable in linear Raman spectroscopy.

The sensitivity of 2D Raman spectroscopy arises from the anharmonicity of potentials and
nonlinear coordinate dependence of polarizability because harmonic dynamics with linear
polarizability has no contribution to the 2D Raman signals.[1] [13] In chapter 3, [14] we
derived the expressions of 2D Raman signals for Morse potential in the Brownian oscillator
model using the perturbative solution of equation of motions. If the Fourier transformations of
2D Raman signals are carried out, the peaks shall be located along @, =, and @, = w,/2
axes in a 2D frequency domain map. By evaluating the volume of each peak, we can measure
the ratio between the anharmonicity of potentials and nonlinear polarizability contributions
through Eq. (3.24).

When Fourier transformation was performed for the 2D time domain data of soft core
system, we found there were two peaks from the localized and delocalized modes. By
measuring the spectral volume in the 2D maps in frequency domain, only the nonlinearity
contribution of the localized mode showed dramatic change between liquid and solid phases,
while other nonlinearity and anharmonicity contributions were continuously changed between
them. This result indicates that the nonlinear polarizability is sensitive to the change in
molecular structure and dynamics. We found that only localized mode of the soft core

potential system varied between solid and liquid phases.

5-2. Application of the multi-dimensional spectroscopy to surface
spectroscopy

Both from the experimental and theoretical points of view, it is natural to develop

multidimensional surface spectroscopy in the following reasons. From the experimental point
of view, the information of dynamical inter- and intra-adsorbate coupling is important to
reveal the underlying surface dynamics. The inter-adsorbate interactions, however, appear as
chemical shifts in linear spectroscopy, which does not represent the intermode couplings.

Here, multidimensional spectroscopies for bulk system such as 2D IR and Raman
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spectroscopies have given us the information on direct anharmonic couplings between
different modes and anharmonic dynamics. To investigate the details of inter-adsorbate
couplings on surface, 2D techniques should be applied to surface spectroscopy. From the
theoretical point of view, the second-order IR response function has the same expression as
the fifth-order Raman response function, which indicates that similar formalisms or
discussions developed in 2D Raman spectroscopy are applicable to 2D IR surface
spectroscopy. According to the previous chapters on fifth-order Raman spectroscopy, we can
separate homogeneous broadening from inhomogeneous broaded spectra, [1] we can obtain
information on the intermode couplings, [15] and we can extract the contributions of
nonlinear coordinate dependence of dipole moments and anharmonicity of potentials with
respect to normal mode by using 2D Raman spectroscopy.[13] The information which is
expected to be obtained in 2D IR surface spectroscopy is also important for clarifying the
underlying surface dynamics.

Indeed the pioneering researches have targeted at higher-order spectroscopies to detect the
details of surface dynamics by some groups as stated in Sec. 4-1, but these experiments have
not explored the merits of 2D technique such as the detection of intermode couplings. Here, |
considered the detection of intermolecular coupling between adsorbates on metal surface by
using 2D IR surface spectroscopy for demonstration.[16] | applied it to an admixture of CO
and isotoped CO on Cu(100) by means of MD simulations based on the stability matrix
formalism.

The 2D profiles of the signals in frequency domain showed both diagonal and cross peaks.
The former peaks mainly arose from the overtones of the CO and isotoped CO, while the
latter represented the couplings between those. As temperature increased, the phases of cross
peaks in a second-order infrared response function changed significantly, while those of
diagonal peaks are unchanged. We showed that the phase shifts were originated from
anharmonicity of potentials due to the electronic interaction between adsorbates. Using a
model with two-dipole moments, we found that the frustrated rotational mode activated with
temperature had effects on the anharmonicity.

These results indicate that 2D IR surface spectroscopy reveals the anharmonic couplings

between adsorbates and surface atoms or between adsorbates which can not be observed in
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linear spectroscopy.
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