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Chapter 1 

 

OVERVIEWS 
 

 

1-1. Two-dimensional Raman Spectroscopy 
  Since the advent of laser technology, optical spectroscopy has moved into a revolutionary 

new era. Development of nonlinear ultrafast spectroscopy, in particular, has provided exciting 

new opportunities for researches in a lot of unexplored areas of science and technology. At the 

same time, the development enables us to perform the new spectroscopic methods. One of 

these spectroscopic methods is two-dimensional (2D) Raman spectroscopy which is 

analogous to 2D nuclear magnetic resonance.[1] [2] 

  2D Raman spectroscopy has been expected to be useful for extracting homogeneous 

broadening from inhomogeneous broadening.[2] [3] [4] [5] [6] [7] The experiments of 2D 

Raman spectroscopy, however, were very difficult because their signals were very weak and 

removing the cascading signal was difficult.[8] The successful demonstration of 2D Raman 

spectroscopy were done by using CS2 [9] [10] [11] and benzene [12] both of which have 

strong polarizabilities. 

  In spite of these experimental difficulties, theoretical researches have been continued 

actively because 2D Raman spectroscopy has possibility to reveal the underlying dynamics 

which cannot be observed in linear Raman spectroscopy. Okumura and Tanimura showed the 

2D Raman signal was originated from the nonlinear coordinate dependence of polarizability 

and anharmonicity of potentials.[13] Saito and Ohmine performed the normal mode 

calculation of the 2D Raman signals which included only the nonlinear polarizability 

contributions. However, the anharmonicity of potential contribution was not negligible. Ma 

and Stratt calculated the 2D Raman signal for Xe from the molecular dynamics (MD) 

simulations [15] based on a stability matrix formalism.[1] [16] In this method, the fluctuation 

of polarizability of a system which is related to the 2D Raman response functions via the 

fluctuation dissipation theorem was calculated.[17] The calculated 2D signals from MD 
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simulation with the stability matrix formalism [18] reasonably agreed with experimantal 

results for liquid CS2 system.[9] On the other hand, 2D Raman signals were calculated from a 

non-equilibrium MD simulation by Jansen et al. in which the laser field was explicitly 

radiated into the system.[19] [20] [21] In many cases, this non-equilibrium MD method is 

computationally less expensive than the MD simulation based on the stability matrix 

formalism. Then, Hasegawa and Tanimura developed a less computationally expensive MD 

simulation algorism by incorporating the non-equilibrium method into the equilibrium MD 

method with the fluctuation-dissipation theorem and calculated 2D signals for various 

liquids.[22] 

  The approximations to calculate the 2D Raman signal have been also developed. Keyes et 

al. used the Langevin equation formalism.[23] [24] DeVane et al. developed the time 

correlation function theory and applied it to the CS2 [25] and atomic liquids [26] to calculate 

the 2D Raman signals. Denny and Reichman used the microscopic molecular hydrodynamics 

theory for the 2D Raman spectrum of Xe in which the multi-point correlation function was 

factorized into the products of density correlation functions.[27] [28] The comparison of the 

results using the microscopic molecular hydrodynamics theory with MD simulation results 

[15] showed the complete lack of an echo in the hydrodynamic theory. These incomplete 

descriptions of the 2D Raman signals with these approximated methods may indicate the 

importance of the multi-point correlation functions and the stability matrix. 

  Saito and Ohmine investigated the effects of anharmonic dynamics [29] [30] and stability 

matrix.[29] According to the Okumura and Tanimura’s prescription, [13] they focused on 1t  

and 21 tt =  axes for the detection of anharmonic dynamics and stability matrix contributions, 

respectively. To compare the 2D Raman signal quantitatively, Nagata and Tanimura projected 

2D Raman signals to 1D plots without loss of information on the stability matrix using the 

symmetric and anti-symmetric integrated response functions.[31] They found the dynamics of 

soft core particles were different for in the liquid phase and in the solid phase even in the 

ultrafast time scales, which could not be observed in linear Raman spectra. The dynamics was 

composed of the two modes; one was a localized mode and the other a delocalized mode.[32] 

These modes were confirmed in the frequency domain 2D Raman maps more clearly than 1D 

plots.[33] Moreover, they showed that the phase change of the 2D Raman signals was 
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originated from the nonlinear polarizability contribution rather than anharmonicity 

contribution, [33] which indicated that the nonlinear polarizability was sensitive to the 

structural change. Temperature dependence of the 2D Raman spectra was also investigated in 

the framework of the time correlation function theory.[34]  

  As we overview these theoretical works on the 2D Raman spectroscopy, it has potentials to 

investigate the intermolecular interaction and related dynamics in condensed phases through 

nonlinear polarizability and anharmonic dynamics. Such measurements are, however, difficult 

and, therefore, new innovations on experimental techniques are called for. Alternatively, some 

theoretical research themes should be focused on as a target of the 2D Raman spectroscopy. 

Ionic liquids [35] or liquid mixtures such as water and acetonitrile [36] [37] [38] are 

interesting systems to carry out the 2D Raman measurements. Although the sensitivity of the 

2D Raman spectroscopy to the dynamics between solid and liquid phases was investigated in 

the present thesis, the sensitivity to the dynamics near the critical temperature is also 

interesting issue. I believe further researches in such problems make the future of the 2D 

Raman spectroscopy brilliant. 

 

 

1-2. Two-dimensional Surface Spectroscopy 
  The subject of CO bonding and intermolecular dynamics on metal surfaces has attracted 

considerable attention, with much of the information about the nature of the bond being 

inferred from measurements of the intramolecular vibrational mode. 

 As the first stage of theoretical studies, the mechanism of the fast relaxation of the CO 

stretching mode on metal surfaces was investigated. By using the Anderson model, Persson 

and Persson showed an electron-hole (e-h) pair creation mechanism contributed to the fast 

relaxation compared with the phonon effects or the dipole-dipole interactions.[39] e-h pair 

creation was explained as the action of the induced dipole moments on metal surface caused 

by the large dynamic dipole moments of CO. The vibrational lifetime estimated was estimated 

as ( )13± ps, which accords with the experimental results.[40] Head-Gordon and Tully 

explained the e-h pair creation as a non-adiabatic process. Based on the Fermi’s golden rule, 

they obtained the following expression for the vibrational lifetime 
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( ) ( )[ ]GGPPTr FF
+−= εεπ

τ
h

1 ,    (1.1) 

where ( )−FP ε  and G  represented the local density of state below Fermi energy Fε  and 

scattering matrix, respectively. Equation (1.1) is analogous to Fisher and Lee formula [42] 

[43] and Seideman and Miller formula.[44] This analogy indicates CO adsorbed on metal 

surfaces works as the scattering source for free electrons of metal surfaces, because the CO 

creates discrete energy levels against the continuous energy levels of metal surfaces.[45] 

Moreover, Head-Gordon and Tully evaluated the vibrational lifetime from the ab initio 

calculation by replacing the ( )−FP ε  and ( )+FP ε  with the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO).[46] 

  Following these studies, MD simulation in the dilute CO limit was carried out by Tully et 

al..[47] They treated e-h pair creation as a stochastic process. The residence and random force 

were calculated from the first principle calculation through Eq. (1.1) and the second 

fluctuation-dissipation theorem, respectively. They concluded that the relaxation of the CO 

stretching and CO frustrated rotational modes arose from e-h pair creation, while those of the 

C-Cu stretching and CO frustrated translational modes were affected by both Cu lattice 

vibration and e-h pair creation. As the following researches, MD simulations in the medium 

coverage were performed to investigate the latest coupling between adsorbed molecules on 

surfaces.[48] [49]  

Experimentalists have also made continuous effort to reveal the underlying dynamics 

caused by the interactions between adsorbed molecules. Interactions between adsorbed 

molecules play an important role on the geometry and lateral hopping of CO on Pd(100) 

surface. Moreover, particular attention has been paid to study the overtone and combination 

bands of CO on Ru(001). Broadening of the overtone frequency of the CO stretch rapidly 

grows with increasing temperature due to thermally activated decay of two-photon bound 

state into single phonon states.[50] Large anharmonicities due to lateral coupling lead to the 

formation of localized two-phonon bound states besides a continuum of delocalized 

two-phonon states.[51] Investigating the CO-CO interaction is crucial to reveal the underlying 

mechanism of surface dynamics.  

Here, it is hopeful to apply the 2D techniques to surface spectroscopy as the 2D infrared 
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(IR) spectroscopy has succeeded the direct observation of coupling between different modes. 

In fact, such new attempts in surface spectroscopies have been actively done for several 

decades. Guyot-Sionnest combined the photon echo techniques with sum-frequency 

generation (SFG) [52] [53] to separate the homogeneous linewidth from an inhomogeneous 

broadening for Si-H vibrations on Si(111) surface.[54] M. Bonn et al. determined the 

intermolecular coupling strength of dipole-coupled CO molecules on Ru(001) using 

infrared-infrared-visible (IR-IR-VIS) SFG.[55] However, IR-IR-VIS SFG is a third-order 

nonlinear optical process and is not surface-specific. N. Belabas and M. Joffre demonstrated a 

visible-infrared 2D spectroscopy in AgGaS2.[56] C. Voelkmann et al. combined four-wave 

mixing with the second-harmonic generation to monitor the temporal evolution of 

photoexcited one- or two- photon coherence.[57] These experiments have two time intervals 

between pulses to obtain the information which cannot be accessed by spectroscopies with 

one time interval. 

  Nagata and Tanimura investigated the second-order 2D IR surface spectroscopy and 

revealed the CO latest coupling is dramatically changed by the frustrated rotational mode 

using MD simulation.[58] The response function in this spectroscopy has the following form. 

( ) ( ) ( )[ ] ( )[ ] ,,0,, 12

2

12
)2( ttittR cbaabc −⎟

⎠
⎞

⎜
⎝
⎛= µµµ
h

    (1.2) 

where ( )taµ  is the dipole moment at time t  in a  direction.[1] [59] [60] 1t  and 2t  are 

the time intervals between first and second interactions with IR pulses and between the 

second interaction and the detection of the signal, respectively. Since the fifth-order Raman 

response function 

( ) ( ) ( )[ ] ( )[ ]12

2

12
)5( ,0,, ttittR efcdababcdef −ΠΠΠ⎟

⎠
⎞

⎜
⎝
⎛=
h

   (1.3) 

has the same form as the response function of surface 2D spectroscopy, similar techniques and 

analyses developed in 2D Raman spectroscopy are expected to be useful in 2D IR surface 

spectroscopy.[2] [13] [15] [16] [18] [19] [22] [31] [33]  

  The potentials of these new spectroscopies are not limited to the metal surface but extends 

from the gas-liquid interfaces,[61] [62] and liquid-solid interfaces [63] to biological system 

such as membrane systems. Since the signals from the surfaces, however, are weaker than 
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those form bulk system, multi-dimensional spectroscopies on surfaces may have much 

difficulties by means of experiments. Nevertheless the author believes the importance and 

necessity of 2D IR surface spectroscopy will not be faded out. 
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Chapter 2 
 

TWO-DIMENSIONAL RAMAN SPECTRA OF 

ATOMIC LIQUIDS AND SOLIDS 
 

 

2-1. Introduction 
One important aspect of molecular vibrational spectroscopies is the ability to monitor 

ultrafast molecular dynamics controlled by complex inter- and intra-molecular interactions.[1] 

Vibrational relaxations are in principle dependent upon the configurations of atoms; therefore, 

we may expect that the information about the local environments of molecules can be 

obtained by analyzing changes in spectra as functions of conditions such as phase, density, 

and temperature. However, conventional linear spectroscopy does not reveal such changes 

because the large broadening caused by damping and inhomogenity makes spectral peaks 

featureless. To conquer these difficulties, 2D vibrational spectroscopies such as fifth-order 

Raman spectroscopy [2] [3] [4] and third-order IR spectroscopy [5] have been proposed.  In 

fifth-order Raman spectroscopy a system is perturbed by two pairs of Raman pulses separated 

by period t1 and then probed after another period t2, whereas in the third-order IR 

spectroscopy a system is perturbed by three IR pulses separated by periods t1 and t2 and then 

probed after another period t3. These 2D spectroscopies enable us to evaluate the detailed 

interrogation of the interactions and configurations between molecules, because the 

contributions to the signals from harmonic vibrational motions vanish in multi-dimensional 

spectroscopies due to the fact that the Gaussian-integral involves in three-point correlation 

function, i.e. ( ) ( )[ ] ( )[ ]0,, 121 ΠΠ+Π ttt  for the fifth-order Raman processes and the 

destructive interferences between vibrational excitations in four-point correlation function, i.e. 

( ) ( )[ ] ( )[ ] ( )[ ]0,,, 121321 µµµµ tttttt +++  for the third-order IR spectroscopy, where ( )tΠ  and 

( )tµ  are a polarizability and a dipole moment at time t . A very large body of theoretical 

works on 2D Raman and IR spectroscopies have been devoted to the study of 
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inhomogenity,[1] anharmonicity,[6] [7] [8], and so on.  MD simulations have explored 

ranging from liquids [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] to more complex 

molecules such as peptides.[19] [20] [21] [22] 

2D Raman spectroscopies are advantageous in studying molecular dynamics in condensed 

phases because Raman pulses can create instantaneous vibrational excitations on the 

molecular system and their coherence can be detected by spectroscopic means.[23] [24] [25] 

[26] The sensitivities of the 2D spectra to anharmonicity of the potential and nonlinear 

dependence of polarizability on nuclear coordinate have been theoretically demonstrated by 

use of the simple models and have been clarified to some extent with the help of quantum 

Liouville pathway treatments.[27] [28] [29] But most of these studies have not yet provided 

helpful pictures of the processes giving rise to particular spectral features in both 

experimental data and MD simulations. Moreover there has been little guidance from theory 

on how to distinguish motions of solids and liquids based on these spectroscopies. 

In this study, we performed MD simulations to investigate how the fifth-order response 

functions measured in 2D Raman spectroscopy depended on temperature and thermodynamic 

state. We have chosen the soft-core model for these simulations because its scaling property 

allows us to discuss the phase transition as a function of temperature.[30] [31] [32] Note that 

the soft-core potential has been used to model metallic glasses with soft modes and has been 

one of the widely acknowledged models explaining so-called “boson peak”.[33] We explored 

the use of the symmetric and anti-symmetric expressions of the integrated 2D Raman 

response functions to clarify the interpretation of the spectroscopy data. These functions were 

originally introduced for an easy check of the simulation results.[34] We then projected the 

2D profiles onto two kinds of 1D plots: one is the classical fifth-order response functions on 

the t1=t2 axis [16] and the other is the anti-symmetric integrated response function on the t1=t2 

axis. Because these functions can be constructed from experimental data as well as simulation 

results, they will be valuable for analyzing the effects of nonlinear dynamics, for instance, as 

result from anharmonicity of the potentials upon the fifth-order signals.  The results of our 

MD simulations indicate that 2D Raman spectroscopy can detect the change in the character 

of molecular motions in different phases in a way that cannot be observed in third-order 

Raman spectroscopy. On the other hand, the profile of the 2D Raman signal is not sensitive to 
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the temperature changes as long as the system is in the same phase. Moreover, when the 

symmetric integrated response function, which has the form of a simple three-body 

correlation function, is compared with the anti-symmetric one, with the form of a three-body 

correlation function including the stability matrix, it is realized what a critical role the 

stability matrix plays in extracting dynamical information from the fifth-order response 

function. 

In Sec. 2-2, we explain our model and simulation procedures. In Sec. 2-3, we introduce the 

symmetric and anti-symmetric integrated response functions and in Sec. 2-4 we analyze the 

calculated signal with these functions. In Sec. 2-5, we discuss the temperature and phase 

effects on the signals. Finally, Sec. 2-6 is devoted to concluding remarks. 

 

 

2-2. Computational Details 
We perform microcanonical MD simulations with a periodic boundary condition on a 

system with 108 spheres interacting via a soft potential [33] 

( ) BrA
r

rU +⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

46

σ
σε ,    (2.1) 

where ε  and σ  are the potential parameters, and the constant A and B are chosen to 

connect the force and potential smoothly at the cutoff r0.  Thus A and B are given by 

( )10
023 rσε⋅  and ( )6025 rσε⋅− , respectively. The molecular system is controlled by laser 

pulses.  The optical response of the system is then described by a correlation function of the 

polarizability. The total polarizability is treated using a dipole-induced dipole (DID) model, 

which can be expressed as [35] [36] 

( ) ( )
( )( ) ( )( )
( )∑ ∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
−

⋅
−=Π

≠m mn mn

nmnmnm

mn

nm
m tr

trtr
tr

t 53

3 αααα
α

rr

,  (2.2) 

where mα  is the molecular polarizability of atom m. The second term is important 

because it possesses the information on the configuration of the surrounding particles. The 

third- and fifth-order response functions, ( )1
)3( tRabcd  and ( )12

)5( , ttRabcdef , which are 

associated with the 1D and 2D Raman spectroscopy, respectively, are given as follows.[1] 
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( ) ( ) ( )[ ]0,11
)3(

cdababcd titR ΠΠ=
h

,   (2.3) 

( ) ( ) ( )[ ] ( )[ ]12

2

12
)5( ,0,, ttittR efcdababcdef −ΠΠΠ⎟

⎠
⎞

⎜
⎝
⎛=
h

,  (2.4) 

where ( )tabΠ  is the ab tensor element of the polarizability at time t, [ ] ABBABA ˆˆˆˆˆ,ˆ −≡  is the 

quantum commutator, and L  is an ensemble average over an equilibrium initial 

distribution. In the classical limit, the operators Ê  and F̂  commute with ˆe Hλ  and we have 

[10]  

( ) ( ) ( )011
)3(

cdababcd ttR ΠΠ−= &β ,    (2.5) 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }

( ) ( ){ } ( )1..2

..12

12
2

12
)5(

0,

,0

0,

tt

tt

ttttR

efBPcdab

BPefcdab

efcdababcdef

−ΠΠΠ−=

−ΠΠΠ−

−ΠΠΠ=

&

&

&&

β

β

β

　　　　　　

　　　　　　　　

　

,  (2.6) 

where { } ..BPL  denotes the Poisson bracket producing stability matrices ( ) ( )02 lk qtp ∂∂  

representing how large the deviation of the momentum of atom k at time t2 is caused by the 

slight displacement of atom l at time 0 .[37] The significance of the fifth-order measurement 

arises from the correlation function including the stability matrix, since the stability matrix 

carries the information on the interference of the particle trajectories that cannot be obtained 

from the third-order measurement.  

There are two approaches to evaluate these signals using MD simulations, the equilibrium 

approach [11] [15] [16] and the no-equilibrium approach.[13] [14] [16] Here we adopt the 

former, because it best reveals the importance of the stability matrix to determine the nature of 

the fifth-order Raman response. In the stability matrix approach, we first carry out the 

equilibrium simulation, then evaluate the response function using the trajectories of particles 

obtained from the simulations. 

To perform the simulation, we set 0.1=ε , 0.1=σ , and 0.1=m  without loss of 

generality, where m is the particle mass. Because of the scaling property of the soft-core 

potential, a temperature times the Boltzmann constant, kT, is chosen as a parameter with fixed 

density 0.1=ρ . We use a fourth-order symplectic integrator method with a time step of 0.01. 

The particles form an face-centered cubic (fcc) lattice for 19.0≤kT , and they behave like 
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liquid for kT≤19.0 . There is also a body-centered cubic (bcc) phase around 0.19kT ≈ , but 

the region of this phase is relatively narrow.[31] [32] Here we calculate the third- and 

fifth-order response functions in the fcc solid and liquid phases.  The MD simulations start 

from an fcc configuration with double the targeted temperature and cools the system by 

velocity rescaling at the rate of 0.002 for each time step. After the kinetic energy of the system 

reaches kT=0.001, we heat the system up to the targeted temperature. In both cases, we 

sample over 60,000 trajectories by preparing different initial configurations to calculate the 

response functions, and we use more than 3500 time steps to stabilize the kinetic energy. As 

the polarizability is independent of momentum, only ( ) ( )12 tqtp rr
∂∂  of the stability matrix 

element is calculated, which decreases to one-fourth the computational cost of evaluating the 

full stability matrices and reduces the memory requirements for sampling trajectories. 

 

 

2-3. Fifth-order Symmetric and Antisymmetric Integrated Response 
Functions 
  As has been shown in many previous studies, the 2D profiles of the fifth-order Raman 

signals are very sensitive to the anharmonicity of the molecular dynamics and nonlinear 

dependence of the polarizability. But interpreting the 2D profiles in terms of the underlying 

dynamics is difficult due to the complex connection between the dynamics and spectroscopy.  

Since the most significant and interesting contribution to the fifth-order signals comes from 

the term with the stability matrix,[16] it is valuable and versatile if we can separate it from the 

others. For this purpose, we utilize the symmetric integrated response function introduced by 

Cao et al.[34] and the anti-symmetric integrated response function. 

To simplify the following explanation, we choose z direction for all tensors and afterward 

we omit the tensor notation. To make the symmetric form with respect to t1 and t2 from the 

fifth-order response function, we integrate Eq. (2.6) with respect to t1, 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ) ( ){ } ( )00,0,

,0000

'',1,

..21..2

..12212

0
2

)5(
12

1

ΠΠΠ−−ΠΠΠ=

−ΠΠΠ+ΠΠΠ−−ΠΠΠ−=

≡ ∫

BPBP

BP

t

ttt

ttttt

dtttRttW

　　　　

　　　　　　 &&β

β

. (2.7) 
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Then, by using the relations 

( ) ( ) ( ) ( ) ( ) ( ){ } ( )00,00'',1
..220 2

)5( ΠΠΠ−=ΠΠΠ=∫
∞

BPttdtttR &β
β

,  (2.8) 

and 

( ) ( ){ } ( ) ( ) ( ) ( ){ } ..122..1 ,00, BPBP tttt −ΠΠΠ=−ΠΠΠ ,   (2.9) 

we have the symmetric integrated response functions as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1212

211212

00000

,,,

tttt

ttWttWttS

−ΠΠΠ−ΠΠΠ+−ΠΠΠ=

−≡
&&& βββ　　　　

. (2.10) 

Here, we also introduce its counterpart, the anti-symmetric integrated response function,  

( ) ( ) ( )
( ) ( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ){ } ( ) ( ) ( ){ } ( ) 　　　　　　　　　　

　　　　

00,0,

,00,0

,,,

..21..2

..1..12

211212

ΠΠΠ−−ΠΠΠ+

−ΠΠΠ−−ΠΠΠ=

+≡

BPBP

BPBP

ttt

ttt

ttWttWttA
. (2.11) 

Although no special attention has previously been paid to the anti-symmetric integrated 

response function, we find that it contains the key to analyze liquid dynamics because it 

isolates the contribution of the stability matrix from that of the simple three-point correlation 

function. In the following, we demonstrate this point by using the present model in the solid 

and liquids phases. If the above expressions are described with the normal mode, the last two 

terms in Eqs. (2.10) and (2.11) negate with the terms such as ΠΠ′Π′ (see Eq. (23)).  Thus, 

the leading terms of the symmetric and anti-symmetric integrated response functions both 

involve Π′Π′Π ′′ . 

As is evident from the definition, these functions satisfy the relations, 

( ) ( )2112 ,, ttSttS −= ,    (2.12) 

and 

( ) ( )2112 ,, ttAttA = .    (2.13) 

Moreover, the functions are orthogonal to one another,  

( ) ( ) 0,, 121221 =⋅∫∫ ttSttAdtdt ,    (2.14) 

which indicates the information of the symmetric integrated response functions is independent 

of that of the anti-symmetric ones.  

The symmetric integrated response function S(t2,t1) is useful for self-consistent checks of 

numerical simulations,[34] because it does not involve the stability matrix and its numerical 
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calculation is 1/N2 times faster than that of the full fifth-order response function.  On the 

contrary, calculation of the anti-symmetric integrated response function, A(t2,t1), requires the 

same cost as calculation of the fifth-order response function. But it contains the important 

information on coherent molecular motions described by the stability matrix. It is of 

importance to notice that although the present analysis is based on the MD simulation, one 

can also construct the symmetric and anti-symmetric integrated response functions from 

experimental data. By utilizing these functions, one can quantitatively discuss the effects of 

nonlinear dynamics, for instance, from anharmonicity. 

To illustrate the nature of these functions, we calculate them from the soft-core model in 

the solid and liquid phases. In Fig. 2.1, we plot the fifth-order response function ( )12
)5( , ttR , 

the symmetric and anti-symmetric integrated response functions S(t2,t1) and A(t2,t1), and the 

derivatives of S(t2,t1) and A(t2,t1) with respect to t1, 

( ) ( ) 11212
)5( ,, tttSttRS ∂∂≡ ,    (2.15) 

and 

( ) ( ) 11212
)5( ,, tttAttRA ∂∂≡ ,    (2.16) 

for kT=0.155 in the solid phase. To compare the contributions of the symmetric and 

anti-symmetric components of the fifth-order response function, in Fig. 2.2 we plot the 

diagonal slices ( )ttR ,)5( , ( ) ( )
21

112
)5( ,,

tttS tttSttR
==

∂∂≡ , and ( ) ( )
21

112
)5( ,,

tttA tttAttR
==

∂∂≡  of 

( )12
)5( , ttR , ( )12

)5( , ttRS , ( )12
)5( , ttRA .  Notice that ( ) ( ) ( )12

)5(
12

)5(
12

)5( ,,, ttRttRttR AS += . 

The position of the peak appearing in ( )12
)5( , ttR  is not necessarily located on the t1=t2 

axis. In fact, we can estimate the peak position in Fig. 2.1(a) is ( ) ( )64.0,77.0, 12 =tt  by using 

a parabolic interpolation. Analyzing the fifth-order signals is difficult because 2D profiles of 

the signals are usually featureless and the locations of their peaks do not necessarily 

correspond to specific physical processes. Although the profiles can be changed with the 

physical conditions, it is very hard to choose portions of the 2D signals to make comparisons. 

Since the anti-symmetric integrated response function always exhibits a symmetric peak 

along t1=t2 axis and is sensitive to the physical conditions due to the contribution from the 

stability matrix term, it is more instructive to analyze the signals using it instead of the 

fifth-order response function. In the following, we discuss the parameter dependences of the 

2D Raman signals with the help of the anti-symmetric integrated response function. 
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Figure 2.1. (a) ( )12

)5( , ttR , (b) S(t2,t1), (c) A(t2,t1), (d) ( )12
)5( , ttRS , and (e) ( )12

)5( , ttRA  at kT=0.155 in 

the solid phase. The peak position at ( ) ( )64.0,77.0, 12 =tt  is denoted by a double circle in Fig. 1(a). 
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Figure 2.2; Diagonal slices (t=t1=t2) from the signals depicted in Fig. 2.1: ( )ttR ,)5( (solid curve), 

( )ttRS ,)5( (dotted), and ( )ttRA ,)5( (dashed). 

 

 

2-4. Symmetric and Antisymmetric Integrated Response Function for 
Normal Mode Analysis 

In a normal mode analysis, molecular motions are represented by an ensemble of 

oscillatory motions along the nuclear coordinates.[1] [38] [39] [40]  This analysis is often 

useful since it gives us access to the microscopic dynamics related to a specific vibrational 

frequency.[41] Since the fifth-order experiments have the ability to measure anharmonic 

vibrational motions through the stability matrix term, it is interesting to observe how the 

symmetric and anti-symmetric integrated response functions contribute to the signals in the 

normal mode analysis. 

When the polarizability is given in powers of a molecular coordinate as 

( ) ( ) ( ) ( )( ) ( ) ( )( ) L+−Π ′′+−Π′+Π=Π 20
2
100 qtqqtqt ,  (2.17) 

the third- and fifth-order response functions ( )( )1
3 tR  and ( ) ( )12

5 , ttR  can be expressed as 

  ( ) ( ) ( ) ( ) ( )
ω
ω

ωωρ 1
11

3 sin tdtCtR 　∫∝′′Π′Π′= ,   (2.18) 

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )( )
2

2112

211212
5

sinsinsin   

,

ω
ωωωωωρ ttttd

ttCtCtCttR
++

∝

+′′+′′′′Π′Π′Π ′′=

∫ 　　　　　
,  (2.19) 
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where ( ) ( ) ωωttC sin=′′ . We then obtain the following results on t=t1=t2, 

  ( ) 0, =ttS ,     (2.20) 

( ) ( ) ( )
3

3sin,
ω
ωωωρ tdttA 　∫∝ .   (2.21) 

Since S(t,t) gives zero, we substitute ( )ttRS ,)5(  and ( )ttRA ,)5(  for S(t,t) and A(t,t), 

( ) ( ) ( ) ( )( )
∫

−
∝ 2

2
)5( cos1sin,

ω
ωωωωρ ttdttRS ,  (2.22) 

( ) ( ) ( ) ( )
∫∝ 2

2
)5( cossin,

ω
ωωωωρ ttdttRA .   (2.23) 

( ) ( )ttR ,5 , ( )ttRS ,)5( , and ( )(5) ,AR t t  can be expressed in terms of ( ) ( )tR 3  as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ −+∝
t

tRtRtRdtttR
0

3335 22436 , ,   (2.24) 

( ) ( )( ) ( )( ) ( )( )( )∫ ++−∝
t

S tRtRtRdtttR
0

333)5( 2433 , ,   (2.25) 

( ) ( ) ( ) ( )( )∫ −∝
t

A tRtRdtttR
0

3)3()5( 339, .    (2.26) 

Thus, by comparing ( )ttRS ,)5(  and ( )(5) ,AR t t  calculated from the fifth-order response 

functions with ( )( ) ( )( ) ( )( )( )∫ ++−
t

tRtRtRdt
0

333 2433  and ( ) ( ) ( )( )∫ −
t

tRtRdt
0

3)3( 339 , we can 

easily estimate the contribution from the anharmonic dynamical terms resulting from the 

stability matrix and the validity of the normal mode expressions. In Fig. 2.3, we compare 
( ) ( )ttR ,5 , ( )ttRS ,)5( , and ( )(5) ,AR t t  with their expressions in terms of ( ) ( )tR 3  under the 

normal mode assumption. Figure 2.3(a) clearly shows us that the normal mode expressions 

fail to predict the fifth-order response functions even in the short time region.  However, if 

we focus on Fig. 2.3(b), we see that the normal mode expressions for the symmetric 

integrated response functions are valid in the region 10.0≤t . The normal mode analysis can 

describe the accurate dynamics in the short time, which is consistent with the results of the 

symmetric integrated response functions.  One of the reasons for the large deviation at 

10.0≥t  can be deduced from Brownian motion theory.  When the function ( )tC ′′  is 

expressed by 
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( ) ( )tetC t 4sin
4

1 222

22
ζω

ζω
ζ −

−
=′′ −    (2.27) 

in the Brownian oscillator model, the quantities calculated from the fifth-order response 

function decay more rapidly than the predictions using the third-order response function. On 

the other hand, in Fig. 2.3(c), ( )(5) ,AR t t  deviates from ( ) ( ) ( )( )∫ −
t

tRtRdt
0

3)3( 339  even for 

10.0≤t , which indicates that the anharmonic contribution from the stability matrix 

( ) ( )12 )0()( tqptq −∂∂Π′Π′Π′ &  plays an important part in the anti-symmetric integrated 

response function. Moreover the deviation of the fifth-order response function from the 

normal mode expression shown in Fig. 2.3(a) is mainly caused by the anti-symmetric part. 

 

 

2-5. Temperature Dependence 
We discuss the response functions in the solid and liquid phases at different temperatures.  

In Fig. 2.4(a), we depict the third-order response functions ( ) ( )tR 3  for kT=0.215 and 0.20 in 

the liquid phases and for kT=0.155 and 0.14 in the solid phases.[42] 

The profiles of the third-order signals in Fig. 2.4 are similar but their decay times are 

slightly different for different temperature.[43] The fifth-order response functions ( ) ( )1,2
5 ttR  

are shown in Fig. 2.5. To illustrate the difference between solid and liquid phases, we also plot 
( )( )ttR ,5  for different temperatures as 1D maps in Fig. 2.6. There are differences between 

Figs. 2.5(a), (b) in the liquid phases, and (c), (d) in the solid phases for 2.01 ≥t  and 2.02 ≥t .  

Figure 2.6 clearly shows that the phase change leads to a change of the spectral decay rates 

especially for 15.0≥t , while the temperature change has a limited effect as long as the 

system is in the same phase. 
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Figure 2.3. (a) ( ) ( ) ,5 ttR  (solid line) and ( ) ( ) ( ) ( ) ( ) ( )( )∫ −+
t

tRtRtRdt
0

333 22436  (dotted line), (b) 

( ) ,)5( ttRS  (solid line) and ( ) ( ) ( ) ( ) ( ) ( )( )∫ ++−
t

tRtRtRdt
0

333 2433  (dotted line), and (c) ( )(5) ,AR t t  

(solid line) and ( ) ( ) ( )( )∫ −
t

tRtRdt
0

3)3( 339  (dotted line) at kT=0.155 in the solid phase.  In each figure, 

the intensities of the solid lines are normalized at the first peak and the dotted lines are scaled so that their 

derivatives are same as those of solid lines near t=0. 
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Figure 2.4. The third-order response functions ( ) ( )tR 3  are depicted for kT=0.215 (solid line), 0.20 

(dotted line) in liquid phases, and kT=0.155 (dashed line), 0.14 (dot-dash line) in solid phases. The 

intensities are normalized. 

 

 

 
Figure 2.5. The classical fifth-order response functions ( )12

)5( , ttR  for the cases (a) kT=0.215, (b) 

kT=0.20 in the liquid phase, and (c) kT=0.155, (d) kT=0.14 in the solid phase.  The intensity of each plot is 

normalized at the first peak. 
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Figure 2.6. The diagonal elements, ( )ttR ,)5( , are illustrated for kT=0.215 (solid line), 0.20 (dotted line) in 

the liquid phase, and kT=0.155 (dashed line), 0.14 (dot-dash line) in the solid phase. The intensity of each 

plot is normalized at the first peak. 

 

 

  Although we can observe differences in the fifth-order response functions between different 

phases, it is more convenient to employ the symmetric integrated response function S(t2,t1) 

and the anti-symmetric one A(t2,t1) so as to see the effects of the stability matrices. In Figs. 2.7 

and 8, we depict these functions.  The diagonal elements of the anti-symmetric integrated 

response functions A(t,t) are also plotted in Fig. 2.9. While we observe similar tendencies 

among the results of S(t2,t1) in Figs. 2.7(a)-(d), we see the clear difference among the results 

of A(t2,t1) in the liquid and solid phases in Figs. 2.8(a)-(d) in 2.01 ≥t  and 2.02 ≥t  and Fig. 

2.9 in 15.0≥t . Although we cannot do longer simulations due to the limitations to our 

computational power, we may expect the bigger and clearer differences in the decay rates in 

the anti-symmetric response functions appear in the longer time region. The sensitivity of 

A(t2,t1) and insensitivity of S(t2,t1) to the phase change result from the stability matrix which 

reveals deviations from harmonic motion as the interference between the trajectories. The 

anti-symmetric integrated response functions, which can be obtained from experimental data 

as well as simulation results by following the procedure explained in Sec. 2-3, are more 

valuable than the symmetric ones, because the former allow us to estimate the contribution 

from the stability matrix directly. 
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Figure 2.7. The symmetric integrated response functions ( )12 , ttS  are plotted as 2D contour maps for the 

cases (a) at kT=0.215, (b) at kT=0.20 in liquid phase, and (c) at kT=0.155, (d) at kT=0.14 in solid phase. The 

intensity of each figure is normalized at the first peak. 
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Figure 2.8. The differences of the anti-symmetric integrated response functions ( )12 , ttA  are plotted as 

two-dimensional contour maps for the cases (a) at kT=0.215, (b) at kT=0.20 in liquid phase, and (c) at 

kT=0.155, (d) at kT=0.14 in solid phase. The intensity of each plot is normalized at the first peak. 

 

 

 
Figure 2.9. The diagonal elements ( )ttA ,  are illustrated for kT=0.215 (solid line), 0.20 (dotted line) in 

liquid phase, and kT=0.155 (dashed line), 0.14 (dot-dash line) in solid phase.  The intensity of each plot is 

normalized at the first peak. 
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2-6. Conclusion 
Using the MD simulation, we calculated the third- and fifth-order Raman signals of atomic 

solids and liquids described by the soft-core potential. To analyze these signals quantitatively 

and to reveal the effect of the stability matrix, we have decomposed the classical fifth-order 

response function into the symmetric and anti-symmetric integrated response functions; the 

symmetric one has the form of the simple three-body correlation function, while the 

anti-symmetric one also includes contributions from the stability matrix. The latter can not be 

expressed accurately in terms of normal modes expressions even in the short time region, 

where the symmetric integrated response function can be. This fact indicates that the 

anharmonic contributions which are missing in the normal mode expressions give rise to an 

important effect on the fifth-order signals. 

It is shown that the change between liquid and solid phases causes a minor effect on the 

third-order signals, while it causes dramatic differences in the fifth-order signals. The 

anti-symmetric integrated response functions show prominent changes as a result of the phase 

transition, whereas the change in the symmetric one is modest. The difference between the 

symmetric and anti-symmetric integrated response functions results from the sensitivity of the 

stability matrix to the nonlinear dynamics, because the stability matrix reveals the deviation 

from the harmonic motion as the interference between the trajectories. This result suggests the 

advantage of using the anti-symmetric integrated response functions rather than the fifth-order 

response functions for analysis. Such features are, however, unable to be revealed within the 

frame work of the normal mode analysis, since it neglects the effects from the anharmonicity 

described by the stability matrix. 

Since we can always construct the symmetric and anti-symmetric integrated response 

functions not only from the simulation results but also from the experimental data, these 

functions will be valuable and versatile tools for analyzing the effects of nonlinear dynamics 

upon the fifth-order signals. 
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Chapter 3 
 

ANALYZING ATOMIC LIQUIDS AND SOLIDS: 

TWO-DIMENSIONAL RAMAN SPECTRA 

 IN FREQUENCY DOMAIN 
 

 

3-1. Introduction 
  Nonlinear optical interactions between the laser and molecular system provide valuable 

and versatile spectroscopic information to understand the dynamics of the system as well as 

its environment. For molecules in a condensed phase, fifth-order Raman and third-order IR 

spectroscopies allow us to capture greater details in molecular dynamics and structure than 

third-order Raman and first-order IR spectroscopies.[1] The utility and possibility of these 

spectroscopies have been demonstrated by various approaches including theoretical 

analyses,[2] [3] MD simulations,[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] 

[18] [19] [20] ab initio calculations,[21] [22] [23] [24] and a variety of experiments.[25] [26] 

[27] [28] [29] [30] [31] [32] [33] Although the potential of multi-dimensional vibrational 

spectroscopies is now well recognized, our comprehension of 2D contour maps has not been 

achieved completely. In a fifth-order Raman case, this might be attributed to the lack of theory 

explaining an overall profile of signal. The previous chapter showed how one could utilize the 

symmetric and anti-symmetric integrated response functions [34] to characterize the role of 

stability matrix in 1D plots. These functions cannot separate the contribution of nonlinear 

polarizability from that of anharmonicity of potentials, but can isolate the contribution of the 

stability matrix from that of the simple three-point correlation function. The role of stability 

matrix is important in terms of equilibrium simulation, whereas the comparison of the term of 

nonlinear polarizability with that of anharmonicity is essential with respect to the normal 

mode (NM) analysis. 
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This chapter presents a practical method to evaluate the relative contributions of nonlinear 

polarizability and anharmonicity of potentials from the experimental and simulation data.  

These contributions can be estimated from analytical theories [3] or MD simulations [6][13] 

by turning on and off the terms responsible for the contributions; however, it has not been 

possible to analyze directly the experimental data especially for multi-mode systems due to 

the complication of the 2D maps. Our approach can extract quantitative information about the 

ratio between the nonlinear polarizability and anharmonicity of potentials in the molecular 

system. To evaluate this ratio, we have derived the analytical expression of the fifth-order 

Raman signal for an anharmonic potential system based on a perturbative calculation of a 

Morse oscillator system.[3] [13]  By carrying out the double Fourier transformation of the 

2D time domain Raman signal, we have obtained the frequency domain expressions of the 

fifth-order Raman signal.  The analysis of spectral volumes gives access to the ratio between 

nonlinear polarizability and anharmonicity, which reveals the change of molecular 

mechanisms between solid and liquid phases. [7]  

In Sec.3-2, we have derived the expression of fifth-order response functions in the 

frequency domain. The derivation of the analytical expression for anharmonicity term is 

explained in Appendix. In Sec.3-3, we have applied our method to simple liquids described by 

a Lennard-Jones (LJ) potential and showed that we can clarify each vibrational mode 

uniquely by using 2D frequency domain maps. The NM expressions using the calculated ratio 

between nonlinear polarizability and anharmonicity are compared with MD simulation 

results.[13] In Sec.3-4, we have further applied our method to the soft core potential systems 

to investigate a role of nonlinear polarizability and anharmonicity, which was not clarified in 

our previous study.[7] Section 3-5 is devoted to the concluding remarks. 

 

 

3-2. Frequency-domain Signals of Fifth-order Raman Spectroscopy 
  The fifth-order Raman response function is defined by a three-body correlation function of 

polarizability.  In this section, we demonstrate how one can obtain the information of the 

nonlinear polarizability and anharmonicity from the experimental and simulation data by 

using the analytical expression of the response function. 
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  We assume the polarizability with ab  tensor, ( )tabΠ , is expanded in terms of a single 

molecular coordinate ( )tq  as 

( ) ( ) ( ) L+Π ′′+Π′=Π−Π 2

2
tqtqt abababab

λ ,   (3.1) 

where λ  is a perturbation index which is set to unity after completion of the perturbation 

expansion.  The molecular coordinate is treated as a harmonic motion ( )tqH  plus a 

perturbative anharmonic motion ( )tqA , 

( ) ( ) ( )tqtqtq AH λ+= .    (3.2) 

The fifth-order response function ( ) ( )12
5 , ttRabcdef  is expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )12
5

,12
5

,12
5

,12
5 ,,,, ttRttRttRttR ANabcdefNLabcdefLTabcdefabcdef ++= λ ,  (3.3) 

where 

( ) ( ) ( ) ( )1212
5

, 0,1, tqtM
kT

ttR HHefcdabLTabcdef −Π′Π′Π′= &    (3.4) 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )112

12

12212
5

,

0,1

00,1

0,1,

tqtqtM
kT

tqqtM
kT

tqtqtM
kT

ttR

HHHefcdab

HHHefcdab

HHHefcdabNLabcdef

−−Π ′′Π′Π′+

−Π′Π ′′Π′+

−Π′Π′Π ′′=

&

&

&

　　　　　　　

　　　　　　　    (3.1) 

are the contributions from linear and nonlinear polarizability, and 

( ) ( ) ( ) ( ) ( ) ( )121212
5 0,10,1,

,
tqtM

kT
tqtM

kT
ttR AHefcdabHAefcdabANabcdef

−Π′Π′Π′+−Π′Π′Π′= &&  (3.6) 

is that from anharmonicity of potentials.  Here, ( ) ( ) ( )121212 ,,, ttMttMttM AH λ+=  is the 

stability matrix for harmonic and anharmonic parts of trajectories, and kT  represents the 

temperature multiplied by Boltzmann constant. 

In the Brownian oscillator (BO) model, the linear polarizability term vanishes and the 

nonlinear polarizability term is reduced to [2] [3] [4] 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )2122

12212
5

,  ,

ttCtCd

tCtCdttR

efcdab

efcdabNLabcdef

+′′′′Π′Π′Π ′′+

′′′′Π′Π ′′Π′∝

∫

∫

ω
ωρω

ω
ωρω

　　　　　　　

,  (3.7) 
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where ( ) ( ) tettC γω −=′′ sin  and the decay rate, γ , is assumed to be independent of ω  in 

order to simplify the following discussion. Hereafter, we adopt the BO model with an 

exponential decay and do not take a bi-exponential decay. The expressions of decay functions 

do not make much difference on the following procedure and discussion about the ratio 

between nonlinear polarizability and anharmonicity of potentials. 

Since the fifth-order signal calculated from the BO approach does not involve the 

anharmonic contribution, it disagrees with the direct evaluation of the response function by 

means of MD simulations. In order to improve the BO approach and evaluate ( ) ( )12
5

, , ttR ANabcdef , 

we analytically calculate ( )tqH  and ( )tqA  for a Morse potential, 

( ) ( )qq eeDqV ββ −− −= 22 ,    (3.8) 

from the perturbative expansion approach, where β  and D  are potential parameters.  We 

then derived the anharmonicity part of the fifth-order response function as 

( ) ( ) ( )
∫ ⎟

⎠
⎞

⎜
⎝
⎛ +′′⎟

⎠
⎞

⎜
⎝
⎛′′Π′Π′Π′∝

22
4, 2

1
23

212
5

,
ttCtCdttR efcdabANabcdef ω

ωρωβ . (3.9) 

An explicit derivation of Eq. (3.9) is given in Appendix, where we compare Eq. (3.9) with the 

anharmonic part of the fifth-order response function for the anharmonicity additive potential 

and show the accordance of Eq. (3.9) with the expressions obtained by Okumura and 

Tanimura and by Ma and Stratt when 3
3 6 βDg −= .[3] [13]  

The anharmonic term (3.9), together with the nonlinear term (3.7), casts the total fifth-order 

response function into the form, 

( ) ( ) ( ) ( ) ( )
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If ca =  and db = , we can recast Eq. (3.10) as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ){
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, (3.11) 
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where the intensities of the nonlinear polarizability and anharmonicity are now denoted by 

( )ωNLabcdefk ,  and ( )ωANabcdefk , , respectively. As is illustrated below, ( )ωNLabcdefk ,  and 

( )ωANabcdefk ,  can be evaluated quantitatively from the experimental and simulation data with 

use of the double Fourier transformation of the response function defined by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ){ }{ }∫ ∫

∫ ∫
∞ ∞

∞ ∞

=

=

0 0 12
5

21

0 0 12
5

22211112
5

,ImIm

,sinsin,~

2211 ttRedtedt

ttRtdttdtR

abcdef
titi

abcdefabcdef

ωω

ωωωω

　　　　　
.  (3.12) 

The substitution of Eq. (3.11) into Eq. (3.12) leads to the expression without tensor elements 

as 

( )( ) ( ) ( ) ( ) ( ) ( )( ){
( ) ( ) ( ) ( )( )}ωωωωωωωωωω

ωωωωωωωωωω
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ωρωωω
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12,212,112,0212
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where 

( ) ( )
( )( )( )22

2
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1
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12,0 42

1;,~
γωγωω

ωωωωωω
++−

−
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γωωω
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=NLR ,   (3.15) 

( ) ( )( )
( )( ) ( )( )22

2
22

1

21
2

12,2 42
22

2
1;,~
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and 

( ) ( )( )
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1

21
2

12,2 42
22

2
1;,~

γωωγωω
ωωωωγ

ωωω
+−+−

−−+−
⋅=ANR .  (3.19) 

If we set ( ) ( )aωωδωρ −= , the signal consists of two peaks centered at aωωω == 21  and 

aωωω == 221  as 
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.(3.20) 

In a real system the spectral distribution ( )ωρ  may not be a delta-function, and the terms 

such as 

( ) ( )( )
( )( ) ( )( )∫ +−+−

−−
22

2
22

1

21
2 γωωγωω

ωωωω
ω
ωρωd    (3.21) 

can also make a contribution to the spectra. Therefore the profiles and positions of peaks are 

slightly displaced from those predicted by Eq. (3.20).  In the case that ( )ωρ  has a Gaussian 

like profile, however, the contributions of Eq. (3.21) to the spectral volume centered at 

aωω ≈  is negligible because we have 

( ) ( )( )
( )( ) ( )( ) 0

22
2

22
1
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212 ≈

+−+−
−−

∫ ∫∫
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where ω∆  represents the spectral width.  If a frequency-resolved spectrum obtained from 

either the experiments or simulations is expressed as 
( ) ( ) ( ) ( ) ( ) ( )aaobsaaobsobs RRR ωωωωωωωωωω ≈≈+≈≈= 12

5
12

5
12

5 ,2~,~,~ , (3.23) 

the contributions from the nonlinear polarizability and anharmonicity for each molecular 

motion can be evaluated through the following equation, 

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )aaobsaaobs

aaobsaaobs

aNL

aAN

RR
RR

k
k

ωωωω
ωωωω
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,2~2,~

55

55

+
−

≈ .   (3.24) 

We now consider the method to separate the peak near aωωω == 21  from other peaks, for 

example, near aωωω == 221 . If ( ) ( ) ( ) ( )21
5

12
5 ,~,~ ωωωω obsobs RR −  is calculated, Eqs. (3.15) and 

(3.18) vanish because of the symmetry with respect to 1ω  and 2ω  for any ( )ωρ .  

Moreover, by using ( ) ( ) ( ) ( )21
5

12
5 ,~,~ ωωωω obsobs RR − , we can remove the cross peaks which often 

overlap with the peak at 221 ωω =  in a multimode system. The volume of each peak can be 

measured accurately as illustrated in Secs. 3-3 and 3-4. Hereafter, we discuss zzzzabcd =  

and zzzzzzabcdef =  tensors in the response functions, and drop the suffixes for simplicity. 
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3-3. Analyzing the Two-dimensional Signals of Lennard-Jones 
Systems 

Using 2D frequency domain maps, we can also clarify the peaks more clearly than 1D 

frequency domain plots.  In this section, we apply our method to the fifth-order 2D Raman 

signals of the LJ potential system, which were well investigated by Ma and Stratt, [12][13] to 

evaluate the consistency of the ratio NLAN kk . At the same time, we demonstrate a way to 

judge whether the spectral peak is composed of a single mode or multi-modes. 

We calculate the fifth-order Raman signals in the LJ potential system by the equilibrium 

and non-equilibrium hybrid method.[11] Then, we transformed the signals from time domain 

to frequency domain with a Welch window function. MD simulations are carried out with 108 

LJ atoms. The same potential, polarizability, size of the simulation box, and time step used in 

these simulations are used as those of Ma and Stratt’s simulation.[12] [13] The forces by LJ 

potential and DID interaction are smoothly cut off at the half length of the simulation box 

with the switching function. In the non-equilibrium calculations, the system is irradiated by 

laser pulse pairs with the strength of 5.0 V/A. The third- and fifth-order response functions are 

calculated by averaging over 4,000,000 configurations. 

The 1D frequency domain plot of the third-order response function, ( ) ( )ω3~R ,  is shown in 

Fig. 3.1. We found that the signal may be fit by either one Lorentzian peak or three Gaussian 

peaks, which are depicted in Fig. 3.1(a) and (b), respectively.[30] Figures 3.2(a) and (b) show 

the 2D contour plots in frequency domain, ( ) ( )12
5 ,~ ωωR  and ( ) ( ) ( ) ( )21

5
12

5 ,~,~ ωωωω RR − , 

respectively. These figures indicate that the dynamics in the LJ potential system is governed 

by one mode. Thus, ( ) ( )ω3~R  should be fit with a single Gaussian peak as Fig. 3.1(b), and the 

frequency for the translational motion is found to be about 19 cm-1. 

As shown in Fig. 3.2(b), ( ) ( ) ( ) ( )21
5

12
5 ,~,~ ωωωω RR −  allows us to specify the peak near 

19221 == ωω cm-1 more easily than ( ) ( )12
5 ,~ ωωR  does. The calculated ratio of the spectral 

volumes, ( ) ( ) ( ) ( )21
5

21
5 ~2~ ωωωω == RR , is 30.0− , which gives us 0.4=NLAN kk  for the 

translational mode.  In fact, if we adapt this ratio and calculate the diagonal element on 

21 tt =  and 2t  axis element on 01 =t  of Eq. (3.10) according to the NM expressions using 

the third-order response function ( ) ( )tR 3  as 
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and 

( )( ) ( )( ) ( )( ) ( )( )( )∫∫ +−+∝
t

AN

t

NL tRtRdtktdtRktR
0

33

0

33 2220, ,  (3.26) 

we can well reconstruct the original fifth-order response function in the short time region as 

plotted in Fig. 3.2(c). The large deviations of Eqs. (3.25) and (3.26) from MD simulations 

over 200 fs are attributed to the use of the NM expression instead of BO expression. 

Moreover, the agreement of these results with Fig. 7 in Ref. [13] strongly supports the ability 

to evaluate the ratio between anharmonicity and nonlinearity from the present our method. 

 

 

 
Figure 3.1. The third-order response functions ( ) ( )ω3~R  are depicted as the solid line.  (a) The curve 

fitted with one Lorenzian peak and (b) the curves fitted with three Gaussian peaks are plotted as the dashed 

lines. 
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Figure 3.2. (a) The fifth-order response function ( ) ( )12
5 ,~ ωωR , and (b) ( ) ( ) ( ) ( )21

5
12

5 ,~,~ ωωωω RR −  for 

the LJ system at 220=T K are depicted. In Fig. (c), The MD results along 21 tt =  (solid line) and 

01 =t  (dotted line) are compared with the signals calculated from Eqs. (3.25) (solid line with circle 

markers) and (26) (dotted line with circle markers), respectively.  

 

 

  The temperature dependence of the ratio ANNL kk  is investigated at 95=T , 120 , and 

160 K for the supercooled liquids and at 220=T  and 260 K for the normal liquids under 

same density, and is shown in Fig. 3.3.[35] In Fig. 3.3, this ratio seems almost constant in 

both phases, which means that fifth-order response function cannot capture the qualitative 

change between both liquids. Although the mobility is changed in general between both 

liquids, its effect does not appear in short time scale of the present simulation. 
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Figure 3.3. The ratio of ANNL kk  for the LJ potential system is illustrated as the function of temperature. 

The dashed line is a guide for eyes. 

 

 

3-4. Analyzing the Two-dimensional Signals of Soft Core Systems 
  We investigate the soft-core potential system defined by the potential,  

( ) BrA
r

rU +⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

46

σ
σε ,   (3.27) 

where ε  and σ  are the potential parameters, and the constants A and B are chosen to 

connect the force and potential smoothly at the cutoff r0.  Thus A and B are given by 

( )10
023 rσε  and ( )6025 rσε⋅− , respectively.  We carried out the MD simulation in 

reduced units.  A temperature multiplied by Boltzmann constant is changed from solid phase 

( 155.0,14.0=kT ) to liquid phase ( 215,0.23.0,20.0 　=kT ) as a parameter with fixed density.  

The other conditions on the simulation are the same as the previously study[7] in which we 

found that the fifth-order Raman signals are sensitive to the difference of the phases, while the 

third-order Raman signals are not. The method developed in this study sheds light on the 

relative intensities of the nonlinear polarizability and anharmonicity on the fifth-order signals. 

The 1D time domain and frequency domain plots, ( ) ( )tR 3  and ( ) ( )ω3~R , 2D time domain 

and frequency domain maps, ( ) ( )12
5 , ttR  and ( ) ( )12

5 ,~ ωωR , and ( ) ( ) ( ) ( )21
5

12
5 ,~,~ ωωωω RR −  

at 14.0=kT  are depicted in Figs. 3.4(a), (b), (c), (d), and (e), respectively, and at 

20.0=kT  are shown in Fig. 3.5(a), (b), (c), (d), and (e), respectively. Figure 3.4(b) exhibits a 
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similar profile to Fig. 3.5(b) and the 1D frequency domain maps in the other temperatures. 

These signals are also similar to the LJ case depicted in Fig. 3.1. On the other hand, we can 

clearly see the difference of 2D signals in the soft-core and LJ cases; the 2D signals of 

soft-core potential system consist of two modes. The frequency of two modes are found to be 

5.6=lω  and 16=hω , respectively. The modes of lω  and hω  are thought to be from 

delocalized vibrational motion for each atom and high frequency localized mode, 

respectively.[36] 

 

 

 
Figure 3.4. (a) The third-order response function ( ) ( )ω3~R  and the fifth-order response functions, (b) 

( ) ( )12
5 ,~ ωωR  and (c) ( ) ( ) ( ) ( )21

5
12

5 ,~,~ ωωωω RR − , for the soft core system at 140.0=kT  are 

depicted. (d) The time domain 2D maps ( ) ( )12
5 , ttR  are shown for comparison (see reference 9). The 

curve fitted to the third-order spectrum with two Gaussian peaks is presented as the dotted line. All figures 

are in reduced units. 
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Figure 3.5. (a) The third-order response function ( ) ( )ω3~R  and the fifth-order response functions, (b) 

( ) ( )12
5 ,~ ωωR  and (c) ( )( ) ( )( )21

5
12

5 ,~,~ ωωωω RR − , for the soft core system at 200.0=kT  are 

depicted. (d) The time domain 2D maps ( ) ( )12
5 , ttR  are shown for comparison (see reference 9). The 

curve fitted to the third-order spectrum with two Gaussian peaks is presented as the dotted line. All figures 

are in reduced units. 

 

 

The relative intensities of the nonlinear polarizability and anharmonicity for lω  and hω  

are determined from the spectral volumes of 2D frequency domain maps as summarized in 

Table 1. The calculated ratios for each mode are visualized in Fig. 3.6 for ( ) ( )lANlNL kk ωω , 

( ) ( )lANhAN kk ωω , and ( ) ( )hANhAN kk ωω . All ratios except for the nonlinear polarizability at 

lω  show almost proportional to each other at any temperature, while the ratios between 

( )lNLk ω  and the other intensities exhibit a specific phase dependency as shown in Fig. 3.6.  

Thus, we may consider that the nonlinear polarizability of the delocalized mode is 

dramatically changed, whereas the high frequency localized mode is not changed as long as 
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the fifth-order Raman spectra can capture. This consideration indicates that the difference of 

the anti-symmetric integrated response functions between solid and liquid phases [7] is 

induced by the nonlinear polarizability of lω . In addition, the anharmonicity makes larger 

contribution to the fifth-order signal than the nonlinear polarizability for the localized mode, 

while makes smaller contribution for delocalized mode as shown in Table 1. 

 

 

 
Figure 3.6. The ratios of ( ) ( )lANlNL kk ωω  (square), ( ) ( )lANhAN kk ωω  (triangle), and 

( ) ( )hNLhAN kk ωω  (circle) for the soft-core potential system are illustrated as the function of temperature. 

All lines are guides for eyes. 
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3-5. Conclusion 
  In this section, we proposed the method to evaluate the contributions from the nonlinear 

polarizability and anharmonicity of potentials utilizing the analytical expression of 2D signals 

in frequency domain. The ratio between two contributions was evaluated from the volumes of 

spectral peaks. With 2D Raman frequency domain maps, we could easily separate 

contributions from different vibrational modes, which was difficult with 1D approach. 

Demonstration to apply our method to the simulation results for LJ potential system 

indicates that primary contribution of molecular motions to the signal comes from only a 

translational mode at 19 cm-1. Moreover we evaluated the ratio between nonlinear 

polarizability and anharmonicity as 0.4=NLAN kk . Good agreement is obtained in 

comparison of the NM expression of the fifth-order response functions using this ratio with 

the data of Ma and Stratt,[13] which supports the consistency of our method. 

  We also examined our method to analyze the signals of the soft-core potential system at 

various temperatures. In our previous study,[7] it was found that the 2D time domain Raman 

signals exhibited a clear difference between the solid and liquid phases, but the origin of this 

difference could not be identified. The present method shows that the different fifth-order 

Raman signals between both phases resulted from the change of the mode of lω  through the 

nonlinear polarizability. At the same time, the phase transition was shown to have little effect 

on the mode of hω . We can conclude from the fifth-order response function that the 

dynamical change between the solid and liquid phases is characterized as not high frequency 

localized mode but delocalized motion in soft core potential systems. Moreover when our 

attention is paid to the contributions to the fifth-order signal, we can find that the nonlinear 

polarizability and anharmonicity of potential are dominant for the localized and delocalized 

modes, respectively. 

 

 

3-6. Appendix: Derivation of the Anharmonic Contribution in Morse 
Potential System 

The contribution of anharmonicity to the fifth-order Raman signal was first evaluated by 

Okumura and Tanimura using Feynman rules for anharmonicity additive potential.[3] Then, 
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by using the adiabatic instantaneous normal mode theory, Ma and Stratt derived the same 

expression as Okumura and Tanimura.[13] Here, we show the same expression can be 

obtained from the perturbative calculations by assuming a Morse potential system defined by 

Eq. (3.8). When the correspondence of the anharmonicity additive potential 

( ) ( ) ( )tqgtqqV 332
2

!32
+=

µω    (3.28) 

with the Morse potential is taken into consideration, we can obtain the relations, 

µβω D2=  and 3
3 6 βDg −= , by expanding the Morse potential with respect of q . We 

may evaluate the fifth-order response function from the solution of the Morse potential, 

because the contributions of the nonlinear polarizability and anharmonicity over 2λ  are 

negligible at small q . 

  The equation of motion for the Morse potential system can be solved analytically and the 

coordinate and momentum are given by 
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where µ  is the mass of molecule, and 1C  and 2C  are the integral constants.  When we 

expand Tayler series up to the first-order around the bottom of the Morse potential, the 

position and momentum are written as 
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and  
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Using these solutions, we can calculate the stability matrix analytically as 
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Thus 
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The substitutions of these equations into Eqs. (3.3), (3.4), (3.5), and (3.6) give us the 

expression for the anharmonicity of potentials as 
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When the relations µβω D2=  and ( ) 221 22
1 kTqDC ==− µω  are used, Eq. (3.38) 

becomes 
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The expression for the anharmonicity additive potential is obtained by setting 3
3 6 βDg −= , 

which has the same form as the expressions obtained by Okumura and Tanimura and by Ma 

and Stratt. 
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Chapter 4 
 

TWO-DIMENSIONAL INFRARED 

SURFACE SPECTROSCOPY FOR CO ON 

CU(100): 

DETECTION OF INTERMOLECULAR 

COUPLING OF ADSORBATES 
 

 

4-1. Introduction 
The vibrational energy dissipation and intermolecular coupling of CO on various metal 

surfaces have attracted much attention and is well understood.[1] The CO stretching mode 

lifetime can be explained by an electron-hole (e-h) pair creation mechanism due to 

antibonding *2π  orbital of the CO molecule.[2] The frustrated CO rotational mode have 

very short lifetimes dominated by the same mechanism.[3] [4] [5] Chemical shifts for the 

frustrated rotational mode are different for Cu(100) and Cu(111), [6] [7] which reflects the 

sensitivity of the adsorbate dynamics to the electronic structure of metal surfaces due to e-h 

pair creation. The stretching and frustrated rotational modes are anharmonically coupled to 

each other.[8] [9] At the same time, the CO frustrated rotational and translational modes are 

coupled.[10] These intermode couplings govern the dynamics of adsorbates on metal surface. 

Dipole-dipole interactions play an important role on the geometry and lateral hopping of 

CO on Pd(100) and Pd(110).[11] [12] Researchers have tried to control lateral CO 

motions.[13] [14] [15] The lateral interactions make local ordering of adsorbates and prevent 

the formation of long range ordered structure at low coverage.[16] Particular attention has 

been paid to the overtone and combination bands of CO on Ru(001). Broadening of the CO 
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stretch overtone rapidly grows with temperature due to thermally activated decay of 

two-photon bound state into single phonon states.[17] Large anharmonicities due to lateral 

coupling lead to the formation of localized two-phonon bound states.[18] Thus, the 

investigation of the intermolecular couplings of CO adsorbed on metal surface is crucial for 

revealing the underlying mechanism of the surface dynamics. 

In linear spectroscopy the couplings between intra- and inter-adsorbate interactions are 

measurable only in terms of chemical shifts. In addition, linear spectroscopy is unable to 

distinguish homogeneous broadening from inhomogeneous broadening.[19] [20] To overcome 

these limitations, multidimensional spectroscopic techniques have been proposed and carried 

out to obtain information on surface dynamics. Guyot-Sionnest combined the photon echo 

and sum-frequency generation (SFG) techniques [21] [22] to extract the homogeneous 

linewidth from the inhomogeneously broadened Si-H vibrations on Si(111) surface.[23] Cho 

proposed infrared-infrared-visible (IR-IR-VIS) SFG [24] and Bonn et al. determined the 

intermolecular coupling strength of dipole-coupled CO on Ru(001) using this SFG.[25] [26] 

However, IR-IR-VIS SFG is a third-order nonlinear optical process and is not surface-specific. 

Belabas and Joffre demonstrated two-dimensional (2D) VIS-IR spectroscopy in AgGaS2.[27] 

Voelkmann et al. combined four-wave mixing with the second-harmonic generation to 

monitor the temporal evolution of photoexcited one- or two- photon coherence.[28]  

In this study, we propose to apply 2D IR surface spectroscopy which utilizes the SFG of 

two independently tunable IR beams to an admixture of C12O16 and isotope labeled C13O16 on 

Cu(100). The pulse sequence and energy diagram of 2D IR surface spectroscopy is presented 

in Fig. 1 with those of 2D Raman spectroscopy. 2D IR surface spectroscopy has two 

independent time axes retaining the surface-specificity, and is related to the second-order 

response function, 

( ) ( ) ( )[ ] ( )[ ] ,,0,, 12

2

12
)2( ttittR cbaabc −⎟

⎠
⎞

⎜
⎝
⎛= µµµ
h

    (4.1) 

where ( )taµ  is the dipole moment at time t  in a  direction.[19] [29] [30] [31] 1t  and 2t  

are the time intervals between the first and second IR pulses and between the second pulse 

and the signal, respectively. Since the fifth-order Raman response function, 
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where ( )tabΠ  is the polarizability at time t  in ab  tensor, has the same form as the 

second-order IR response function Eq.(4.1), similar formulism and simulation strategies 

developed in 2D Raman spectroscopy [20] [32] [33] [34] [35] [36] [37] [38] [29] [40] [41] 

[42] [43] are applicable to 2D IR surface spectroscopy. We calculate 2D IR surface signals by 

means of molecular dynamics (MD) simulation based on the stability matrix formalism [33] 

[35] [37] [40] to investigate roles of anharmonic coupling.[34] In third-order IR spectra, 13C 

and 18O isotope substitution has been used to change the frequency [44] [45] [46] [47] [48] 

[49] and the cross peaks between two amide-I’ modes were observed.[49] These suggest the 

possible detection of isotopic effects of adsorbates in 2D IR surface spectroscopy. 

The aim of the present article is to explore a possibility of 2D IR surface spectroscopy to 

detect intermolecular anharmonic couplings between CO and isotopic CO stretching modes 

on Cu(100) at different temperatures. In Sec. 4.2 details of the MD simulation are explained. 

The temperature dependence of the first-order response functions of IR spectroscopy and the 

second order response functions of 2D IR surface spectroscopy are discussed in Sec. 4.3 and 

Sec. 4.4, respectively. Finally, concluding remarks are given in Sec. 4.5. 

 

 

 
Figure 4.1. Pulse sequences (left) and typical energy diagrams (right) for 2nd-order IR surface 

spectroscopy and 5th-order Raman spectroscopy. Solid and dotted lines denote the transition 

of bra and ket vectors, respectively. 
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4-2. Molecular dynamics simulation 
  In 2D Raman spectroscopy researchers have calculated the classical limit of the fifth-order 

Raman response function 

( ) ( ) ( ){ } ( )1..212
)5( 0,1, tt

kT
ttR efBPcdababcdef −ΠΠΠ−= & ,   (4.3) 

where { } ..BPL , k , and T  denote the Poisson bracket, boltzmann constant, and temperature, 

respectively.[33] [35] [36] [37] [38] [39] [40] [41] [42] [43] The response function Eq. (3) 

gives direct information on anharmonic dynamics [39] [43] and coherent dynamics through 

the stability matrix.[39] [40] Similarly, in 2D IR surface spectroscopy, it is necessary to 

calculate the classical limit of the second-order IR response function 
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in order to describe the surface dynamics and reveal the dynamical intermode correlation. We 

calculated the 2D surface IR signals by means of the MD simulation based on the stability 

matrix formalism, where calculation of stability matrix ( ) ( )02 ji ptq ∂∂  needs the N3  

trajectories for one initial configuration, where N  is the number of particles. 

The following potentials were employed in our MD simulation; the Cu-Cu interaction 

potential developed by Wonchoba and Truhlar, [50] the Cu-C-O three-body potential and C-O 

intramolecular potential by Tully et al., [5] and the CO-CO inter-adsorbate potential by van 

der Pol et al. [51] and Janssen et al..[52] The inter-adsorbate potential included Van der Waals 

terms and electronic terms representing dipole-dipole, dipole-quadrupole, and 

quadrupole-quadrupole interactions. The effects of e-h pair creation was included as 

stochastic forces and frictions whose parameters are made by Tully et al..[5] Similar MD 

simulations for CO on Cu surface have been carried out to investigate the desorption of CO 

from Cu(100) enhanced by neighbor CO molecules [53] and adsorption of CO on stepped 

surface of Cu(211).[54] 

Our simulations were based on classical equations of motion for CO interacting with 4 

surface layers with 16 Cu atoms in each layer. The bottom layer was rigid and interacted only 
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with the nearest layer. Since the CO intramolecular force was much stronger than the other 

forces, we employed the RESPA algorithm [55] summarized in the Appendix. The time 

evolution was carried out for 6.121 == tt ps with 1=∆T fs and 1.0=∆t fs, where T∆  and 

t∆  are the longer and shorter time steps defined in the RESPA. 6.121 == tt ps is not enough 

to observe the linewidth of CO stretching mode in 1D plots or 2D maps, but is sufficient for 

the dynamical coupling between adsorbates. The Langevin equations were solved using 

Brunger-Brooks-Karplus algorithm.[56] To calculate the optical response, the dipole moment 

( )tµ  was assumed to be 

( ) ( )trt 10 µµµ += ,    (4.5) 

where 0µ  and 1µ  denoted the permanent dipole moments and the first derivative of the 

dipole elements as the function of CO distance ( )tr . By using Gaussian03 package, the 

parameters 1326.00 =µ  Debye and 098.91 =µ  Debye Å -1 were determined from the 

optimized structure of free CO and OCCu with fixed 13 Cu atoms, respectively.[4] The 

optimized geometries and dipole moments were calculated at the B3LYP/6-31G(2d,p) level of 

the density functional theory. 

The dipole moments for these high frequency modes are primarily determined by the 

intramolecular interactions. Therefore, the first derivatives of CO dipole moments with 

respect to Cu atoms degrees of freedom are negligible compared with those with respect to C 

and O atoms, making it unnecessary to calculate the stability matrix of Cu atoms. 

In 2D Raman spectroscopy of pure liquids, non-equilibrium MD (NEMD) simulations are 

computationally less expensive than MD simulations based on the stability matrix 

formalism.[36] [42] This is because, for second-order IR or fifth-order Raman response 

functions, calculation of stability matrix requires 3N  trajectories, while only 4 trajectories 

are needed in NEMD simulations.[42] However, when the simulations of multidimensional 

spectroscopy are directed to specific vibrational modes such as the CO vibrational mode of 

amide I in aqueous solution, [49] the above approximation requires only calculation of the 

stability matrix with respect to C and O atoms composing the CO vibrational mode, and the 

atoms around them if needed. It should be stressed that the above approximation may make 

the MD simulations based on the stability matrix formalism computationally less expensive 

than the NEMD. 
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  The 2D signals were calculated by averaging over 1,500,000, 1,200,000, and 700,000 

initial configurations for 60K, 100K, and 150K, respectively. Numerical convergence in time 

domain data was confirmed by checking the anti-symmetric integrated response functions 

which characterized the behavior of stability matrix [40] 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ } ( ) ( ){ } ( )00,,00,02, ...... ΠΠΠ−−ΠΠΠ−−ΠΠΠ= BPBPBP ttttttA . (4.5) 

The anti-symmetric integrated response functions for 60K, 100K, and 150K are shown in Fig. 

4.2. 

 

 

 
Figure 4.2. Anti-symmetric integrated response functions of second-order IR response functions 

at 60K, 100K, and 150K. Each plot is normalized at the maximum of the data. 

 

 

4-3. Linear Response Function 
The MD simulations of the linear response functions were carried out for four COs and 

isotopic COs on Cu(100) at 60K, 100K, and 150K. The spectra displayed in Fig. 4.3 show the 

CO stretching frequencies of CO and isotopic CO were 12179 −cm  and 12123 −cm  at 150K, 

respectively. The corresponding frequencies for one CO and isotopic CO on Cu(100) are 
12175 −cm  and 12120 −cm . This shows blue shift due to the electronic interaction, in 

satisfactory agreement with the experiment.[6]  

The peak positions are independent of temperature. Indeed temperature has influence on the 

linewidth in the experiment, but the linewidth is not precisely reproduced in our simulation as 
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stated in the previous section. Although the dynamics may be activated by increasing 

temperature, it has little effect on the CO stretching frequency. The spectra are not affected by 

the dynamics of neighbor adsorbates. 

 

 
Figure 4.3. Linear spectra at 60K, 100K, and 150K. Each plot 

is normalized as the area is same at each temperature. 

 

 

4-4. Two-dimensional Response Function 
  One of the merits of the 2D techniques is their capacity to identify signals corresponding to 

specific Liouville space pathways.[19] Here, we focus only on CO stretching modes. The 

double-sided Feynman diagrams corresponding to the peaks on the areas of the fundamental 

tone area ( )1
2

11
1

1 22502050,22502050 −−−− ≤≤≤≤ cmcmcmcm ωω  and overtone area 

( )1
2

11
1

1 45004100,22502050 −−−− ≤≤≤≤ cmcmcmcm ωω  are sketched in Fig. 4.4(a) and (b), 

respectively.[30] 

The calculated 2D signals in the fundamental tone area at different temperatures are 

depicted in Figs. 4.5. The main peaks are located at 

( ) ( ) ( ) ( ) ( )11111111
21 2179,2179,2123,2179,2179,2123,2123,2123, −−−−−−−−= cmcmcmcmcmcmcmcmωω . 

Since the times 6.121 == tt ps are shorter than the relaxation time of signals, we observe 

weak sidelobe peaks along 1
1 2179,2123 −= cmω  and 1

2 2179,2123 −= cmω . 

The overtone transitions of a single oscillator such as |0,00,2||0,00,0| ><→><  make a 

larger contribution to the diagonal peaks than the transitions due to the inter-adsorbate 
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couplings such as |0,01,1||0,00,0| ><→>< , where >ji,|  represents the combination of 

i th excited state of CO and j th excited state of isotopic CO. Thus, the insensitivity of 

diagonal peaks to temperature indicates that the potential anharmonicity with respect to single 

CO stretching mode 3
1

3
111 rVg ∂∂≡  is unchanged. The volumes of the cross peaks are at 

most about one tenth of those of the diagonal peaks. 

 

 

 
Figure 4.4. Double-sided Feynman diagrams of 2D IR surface response function in CO on Cu(100) 

corresponding to the signals (a) in the fundamental tone area and (b) in the overtone area. 

>g| , >1| e , and >2| e  represent ground state, one quanta excited states including >0,1|  and 

>1,0| , and two quanta excited states including >0,2| , >1,1| , and >2,0| , respectively. 

 White and black circles show once and twice interactions between laser field and system. 

 

 

Figure 4.5. Imaginary parts of 2D signals of the fundamental tone at (a) 60K, (b) 100K, and (c) 150K. 

Each graph is normalized at maxima peaks. 



 58

The cross peaks representing anharmonic intermolecular couplings between CO and 

isotopic CO change significantly at 60K, 100K, and 150K. The intermolecular couplings are 

caused by intermolecular anharmonic potentials composed by different CO stretch modes.[24] 

At least, three primary causes for inter-adsorbate couplings are possible; induced dipole 

moments on Cu surface (e-h pair creation), the couplings through surface Cu atoms (phonon 

effect), and electronic interactions between CO and isotopic CO. The first mechanism is 

excluded in our simulation because the effect of e-h pair creation is expressed by the frictions 

and stochastic forces [5] and cannot produce the correlation between CO and isotopic CO. 

Therefore, we consider the latter two possibilities. To examine the second mechanism, we 

calculated the 2D signal at 150K by not allowing motion of the Cu atoms. The results shown 

in Fig. 4.6 resemble to the Fig. 4.5(c), which indicates that the phonon effect is not dominant 

for inter-adsorbate couplings. To evaluate the third mechanism, we calculated the 2D map at 

150K with the electronic charges on CO to be zero, and illustrated it in Fig. 4.7. The cross 

peaks at ( ) ( )11
21 2179,2123, −−= cmcmωω  in Fig. 4.7 are much weaker than those in Fig. 4.5, 

and the phase of the cross peaks at ( ) ( )11
21 2123,2179, −−= cmcmωω  also changes between 

two figures. The inter-adsorbate interactions are primarily governed by electronic interactions 

which are about 10 times stronger than Van der Waals interactions. Therefore, the temperature 

dependence of the cross peaks may be attributed to electronic interactions. 

Since the electric charges are fixed in our simulation, the electronic interaction strength 

depends on the distance between COs. In Fig. 4.8, we show the radial distribution functions 

(RDFs) of C-C, O-O, and Cu-Cu. The C-C and O-O RDFs similarly expand with temperature 

in contrast to the Cu-Cu RDF, indicating that temperature activates the frustrated rotational 

mode. The nonlinear dipole moments and anharmonicity of potentials give non-vanishing 

elements in the second-order IR response function as in the fifth-order Raman response 

function.[32] The nonlinearity, however, plays minor role on the second-order response 

function compared to the anharmonicity. In contrast, both give comparable contributions to 

the fifth-order Raman response function.[38] [29] [41] [30] Based on these arguments, we 

focused mainly on the electronic interactions through the dynamics of CO and its potential 

anharmonicity. Our model is simplified to extract the lateral dipole-dipole couplings on 

surface; the electric charges q−  on adsorbates and q+  on metal surface are set and the  
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Figure 4.6. Imaginary parts of 2D signals of the          Figure 4.7. Imaginary parts of 2D signlas of 

the fundamental tone at 150K with Cu atoms fixed.         fundamental tone at 150K without electronic 

            interaction.  

 

 

 
Figure 4.8. Radial distribution functions of (a) Cu-Cu,  

(b) C-C, and (c) O-O at 60K (solid) and 150K (dotted). 

 

 

angles between dipole moments and vertical line, 1θ  and 2θ , are selected as variables (Fig. 

4.9). The inter-adsorbate potential of a right side adosorbate is given by 
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where R  is the distance between surface atoms and ir  is the distance between the i th 

adsorbate and the corresponding surface atom. The strengths of the cross peaks are 

proportional to the potential anharmonicity for different normal modes 2
21

3
122 rrVg ∂∂∂≡ . 

[24] [32] [34] We plot 122g  in Fig. 4.10 as the functions of 1θ  and 2θ  with AR 6.3= , 

Arr 9.121 == , and Debyeqr 11 =  for simplicity. It is found that 122g  increases 

monotonously as 21 θθ −  increases. It is found that 122g  increases monotonously as 21 θθ −  

increases. The 21 θθ −  distribution for all adsorbates is shown in Fig. 4.11. This indicates that 

the rotational dynamics of adsorbates becomes active for higher temperature, which leads the 

wider 21 θθ −  distribution. The wider 21 θθ −  distribution increases the anharmonicity of 

potentials 122g  and changes the phase of the cross peaks followed by Fig. 4.10. 

 

 

 

Figure 4.9. The model with two dipole moments. A and S denote the adsorbate and surface atoms. 

 

 

Figure 4.10. Anharmonicity of potential 122g  as functions of 1θ  and 2θ . 
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Figure 4.11. ( )21cos θθ −  distribution when Cu-Cu distance is less than 3.8A. 

The distributions at 60K and 150K denote solid and dotted lines, respectively. 

 

 

 

Figure 4.12. Imaginary parts of 2D signals of the overtone at (a) 60K, (b) 100K, and (c) 150K. 

Each graph is normalized at maxima peaks. 

 

 

Finally, the calculated 2D signals in the overtone area at different temperatures are shown 

in Figs. 4.12. When Figs. 4.5 and 4.12 are compared, we can find that the cross peaks of Fig. 

4.11 are much smaller than those of Fig. 4.5. This can be explained by the double-sided 

Feynman diagrams in Fig. 4.4. The cross peaks in the fundamental tone area arise from, for 

example, the optical process |0,00,0||0,01,0||0,00,1||0,00,0| ><→><→><→><  in 

Feynman diagram Fig. 4.4(a1). Similarly, the cross peaks in the overtone area arise from, for 

example, the process |0,00,0||0,01,1||0,00,1||0,00,0| ><→><→><→><  in Fig. 4.4(b). 
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Since the one quantum process |0,01,1||0,00,1| ><→><  and two quanta processes, 

|0,01,0||0,00,1| ><→><  and |0,00,0||0,01,1| ><→>< , require the couplings between CO 

and isotoped CO and have much less transition dipole moment than the one quantum 

processes, |0,00,1||0,00,0| ><→><  and |0,00,0||0,01,0| ><→>< , the cross peaks in the 

fundamental tone area are bigger than those in the overtone area. Moreover, the diagonal 

peaks in the overtone area have opposite signs as those in the fundamental tone area. As was 

shown in the fifth-order Raman spectroscopy, [41] the peak intensities of the signals in 

frequency domain 2D maps are determined by the interplay between the nonlinear coordinate 

dependence of dipole moments (NL) and the anharmonicity if potential (AN); NL+AN 

contributes to the diagonal peaks in the fundamental tone area, while NL-AN contributes to 

the diagonal peaks in the overtone area. Since the contributions of NL to 2D signals are much 

smaller than those of AN, the signs of the diagonal peaks in the fundamental tone and 

overtone areas become positive and negative corresponding to the contributions AN and –AN, 

respectively. 

 

 

4-5. Concluding Remarks 
We carried out the MD simulation for CO on Cu(100) to calculate the signals of 2D IR 

surface spectroscopy for various temperatures. Our MD simulation was based on the stability 

matrix formalism and e-h pair creation was included as a stochastic process. When 

temperatures were set to be 60K, 100K, and 150K, the cross peaks were significantly changed 

in the fundamental tone areas of 2D frequency domain maps, while the appreciable difference 

could not be found in linear response functions. Comparison of the signals from the MD 

simulations without electronic interactions and with surface Cu atoms fixed indicated that the 

electronic interactions were the primary cause of the temperature dependence of the cross 

peaks. To explore this point, we employed the simple model with two dipole moments whose 

configurations were characterized by the angles between dipole moments and vertical line 1θ  

and 2θ . It was found that the increase of  21 θθ −  changed the anharmonicity from negative 

to positive signs. In fact, wider 21 θθ −  distribution with higher temperature was observed in 

our simulation. The frustrated rotational mode activated by increasing temperature changed 
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the anharmonicity of potentials and, consequently, the phase of cross peaks. 

We further compared the signals in the overtone area with in the fundamental tone area. 

The cross peaks in the overtone area were much smaller than those in the fundamental tone 

area. This was because the couplings between CO and isotoped CO were required twice in the 

optical process corresponding to the signals in the overtone area, while there was one 

coupling in the optical process in the fundamental tone area. Moreover the phases of the 

diagonal peaks were changed between in the fundamental tone area and in the overtone area. 

This was explained from our previous study of 2D Raman spectroscopy, the anharmonicity of 

potential with respect to the single CO stretching mode gave positive and negative 

contribution to the fundamental tone and the overtone, respectively. 

Finally, we make the following two points. First, the e-h pair creation mechanism plays a 

major role in surface dynamics such as pure dephasing on metal surface.[57] and theoretical 

descriptions of e-h pair creation are well tested.[58] [59] Although the effect of e-h pair 

creation was treated by using the friction and stochastic forces in this study, it is challenging 

to simulate the influence of e-h pair creation on the inter-adosorbate couplings. Second, some 

studies have shown the capacity of 2D IR spectroscopy to reveal the intermolecular 

interactions by probing the intramolecular interactions. [60] [61] [62] [63] For example, 

Zheng et al. probed the equilibrium dynamics of phenol complexation to benzene in a 

benzene-carbon tetrachloride solvent mixture, [60] [61] and Cowan et al. investigated into the 

loss of memory of persistent correlations in water structure. [62]. In this study the temperature 

dependence of the inter-adsorbate coupling was discussed by observing the cross peaks of the 

CO stretch. This study demonstrated the same ability of the multidimensional IR 

spectroscopies to provide similar information on surfaces as well as in the bulk. 

 

 

4-6. Appendix: Summary of RESPA 
The RESPA was introduced to lower the computation cost of integrating the equations of 

motion by separating all forces into short and long range types, sF  and lF .[55] These forces 

are integrated with different time steps. In one dimensional system, the Liouville operator L  

can be rewritten as 
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,VlVsK iLiLiLiL ++=     (4.7) 

where 

,
x

xiLK ∂
∂

= &      (4.8) 

( ) ,
p

xFiL sVs ∂
∂

=      (4.9) 

and 

( ) .
p

xFiL lVl ∂
∂

=      (4.10) 

The propagator can then be written 
( ) ( ) ( ) ( )[ ] ( ) ( ),323222 TOetOeeeee tiLntiLtiLtiLtiLTiL VlKVsKVl ∆+∆+= ∆∆∆∆∆∆  (4.11) 

where nTt ∆=∆ .  

  In our system, the force by the CO intramolecular potential corresponds to sF , while all 

other forces are classified into lF . The Liouville operator of the kinetic part can be 

decomposed into fast and slow motion parts corresponding to sF  and lF , respectively. 

.KlKsK iLiLiL +=      (4.12) 

Note that KsL  is dependent on the degrees of freedom of C and O atoms, while KlL  includes 

the degrees of freedom of all atoms. Since Cu atoms are independent of sF , the time 

evolution of Cu atoms can be extracted from the iteration with smaller time step. Thus, we get 
( ) ( )[ ] ( ) ( )
( ) ( ) ( ) ( )[ ] ( ) ( ).323222
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VlKlKsVsKsVl

VlVsKsKlVl

∆+∆+=

∆+=
∆∆∆∆∆∆

∆∆++∆∆

 (4.13) 

Eq. (4.13) avoiding n  times time evolution with respect to the position of Cu atoms 

compared with the original RESPA (4.11). 

The increase of the atoms independent of the short range forces accelerates the efficiency 

of Eq. (4.13). The methodology is useful in the MD simulations ranging from the surface 

dynamics to the molecules in the solution in which the solute molecules are treated as rigid 

bodies and interacts with the solute molecules. We explain this methodology using the 

velocity Verlet algorism which is an example of a second order symplectic integrator. This 

methodology is more important for the higher order symplectic integrator method. 
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Chapter 5 
 

CONCLUSION 
 

 

5-1. Quantitative Analyses Beyond Qualitative 
  Over ten years passed since 2D Raman spectroscopy was proposed theoretically, [1] and 

some experimental successes were reported.[2] [3] [4] [5] By using MD simulations the 2D 

Raman signals were calculated in Xe, [6] [7] CS2, [7] [8] water, [7] [9] [10] benzene, [11] and 

soft core system.[12] When these experimental and simulation results were discussed, one 

usually employed oversimplified models such as the Brownian oscillator model.[13] The 

discussions and analyses by using these models were qualitative rather than quantitative. 

Quantitative analyses beyond qualitative shall be required as the next stage of 2D Raman 

spectroscopy to insight into the details of molecular dynamics. 

  Without navigation tools for 2D maps, it is difficult to compare experimental data or 

simulation data with each other. For example, although we can obtain some information such 

as peak positions and direction of ridges from the 2D maps, we cannot extract any 

information on dynamics as long as the underlying mechanisms of these features are not 

revealed. Tthe projection of the 2D maps onto the 1D plots without loss of important 

information which characterizes the fifth-order Raman response function is one of the 

practical ways to analyze the 2D signals. How we project the 2D maps onto 1D plots depends 

on what we want to investigate. In this thesis, we showed two examples: if we want to know 

the role of the stability matrix, analyzing the antisymmetric integrated response function is the 

best approach.[12] If you want to know the ratio between anharmonicity contributions and 

nonlinear polarizability which are the main sources of the 2D Raman signal, analyzing the 2D 

frequency-domain map is the best way.[14] Note that the former approach can extract more 

dynamical information than the latter. 

  In chapter 2, we applied these methods to the soft core system and found that even in 

femtosecond order ultrafast region 2D Raman signals can capture the difference between solid 
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and liquid phases to which the linear Raman spectra are not sensitive. This indicates that 2D 

Raman spectroscopy has a possibility to investigate the detailed molecular dynamics and 

structures near critical points which cannot be observable in linear Raman spectroscopy. 

 The sensitivity of 2D Raman spectroscopy arises from the anharmonicity of potentials and 

nonlinear coordinate dependence of polarizability because harmonic dynamics with linear 

polarizability has no contribution to the 2D Raman signals.[1] [13] In chapter 3, [14] we 

derived the expressions of 2D Raman signals for Morse potential in the Brownian oscillator 

model using the perturbative solution of equation of motions. If the Fourier transformations of 

2D Raman signals are carried out, the peaks shall be located along 21 ωω =  and 221 ωω =  

axes in a 2D frequency domain map. By evaluating the volume of each peak, we can measure 

the ratio between the anharmonicity of potentials and nonlinear polarizability contributions 

through Eq. (3.24). 

  When Fourier transformation was performed for the 2D time domain data of soft core 

system, we found there were two peaks from the localized and delocalized modes. By 

measuring the spectral volume in the 2D maps in frequency domain, only the nonlinearity 

contribution of the localized mode showed dramatic change between liquid and solid phases, 

while other nonlinearity and anharmonicity contributions were continuously changed between 

them. This result indicates that the nonlinear polarizability is sensitive to the change in 

molecular structure and dynamics. We found that only localized mode of the soft core 

potential system varied between solid and liquid phases. 

 

 

5-2. Application of the multi-dimensional spectroscopy to surface 
spectroscopy 
  Both from the experimental and theoretical points of view, it is natural to develop 

multidimensional surface spectroscopy in the following reasons. From the experimental point 

of view, the information of dynamical inter- and intra-adsorbate coupling is important to 

reveal the underlying surface dynamics. The inter-adsorbate interactions, however, appear as 

chemical shifts in linear spectroscopy, which does not represent the intermode couplings. 

Here, multidimensional spectroscopies for bulk system such as 2D IR and Raman 
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spectroscopies have given us the information on direct anharmonic couplings between 

different modes and anharmonic dynamics. To investigate the details of inter-adsorbate 

couplings on surface, 2D techniques should be applied to surface spectroscopy. From the 

theoretical point of view, the second-order IR response function has the same expression as 

the fifth-order Raman response function, which indicates that similar formalisms or 

discussions developed in 2D Raman spectroscopy are applicable to 2D IR surface 

spectroscopy. According to the previous chapters on fifth-order Raman spectroscopy, we can 

separate homogeneous broadening from inhomogeneous broaded spectra, [1] we can obtain 

information on the intermode couplings, [15] and we can extract the contributions of 

nonlinear coordinate dependence of dipole moments and anharmonicity of potentials with 

respect to normal mode by using 2D Raman spectroscopy.[13] The information which is 

expected to be obtained in 2D IR surface spectroscopy is also important for clarifying the 

underlying surface dynamics. 

  Indeed the pioneering researches have targeted at higher-order spectroscopies to detect the 

details of surface dynamics by some groups as stated in Sec. 4-1, but these experiments have 

not explored the merits of 2D technique such as the detection of intermode couplings. Here, I 

considered the detection of intermolecular coupling between adsorbates on metal surface by 

using 2D IR surface spectroscopy for demonstration.[16] I applied it to an admixture of CO 

and isotoped CO on Cu(100) by means of MD simulations based on the stability matrix 

formalism. 

The 2D profiles of the signals in frequency domain showed both diagonal and cross peaks. 

The former peaks mainly arose from the overtones of the CO and isotoped CO, while the 

latter represented the couplings between those. As temperature increased, the phases of cross 

peaks in a second-order infrared response function changed significantly, while those of 

diagonal peaks are unchanged. We showed that the phase shifts were originated from 

anharmonicity of potentials due to the electronic interaction between adsorbates. Using a 

model with two-dipole moments, we found that the frustrated rotational mode activated with 

temperature had effects on the anharmonicity. 

These results indicate that 2D IR surface spectroscopy reveals the anharmonic couplings 

between adsorbates and surface atoms or between adsorbates which can not be observed in 
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linear spectroscopy. 
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