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Statistical mechanics aims at providing us with 
theoretical methods to treat physical systems con­
sisting of a g回t number of degrees of freedom. 
We are usually concerned with a certain projection 
of the motion of the entire system; for example we 
observe a Brownian particle under a microsco戸・
Such a projected motion will necessarily bear a 
stochastic nature, becat』se a gr帥t part of the 
microscopic information is lost by projection. We 
may formulate the problem generally in the follow綱

ing way. We observe a physical system A which is 
in contact with a large bath B‘ The bath B exerts 
a force on A which may be regarded as stochastic 
and induces a st田hastic motion of A. In a very 
wide meaning of the word, we may call this sort 
of stochastic motion as a Brownian motion. The 
purpose of the present pa戸r is to give a few 印刷

marks on st田hastic consideration of the Brownian 
motion. 

is replaced by 

1ι＝F(a, r)+K(t）・ （ 3)
dt 

Equation (I) or (2) may be used for determinati岨

of the un凹rturbed Brownian motion of the syste回
and eq. 。） for determination of the response of 
the system to K. These equations are defined by 
specifying the basic random proc民s incorporated 
in the process R or F.

We may call this sort of approach a stochastic 
th回ry of a randomly modulated system. As a 
phenomenological theory, one will not n民essarily
be bothered how one derives the stochastic pro戸r­
ties of R or F by th巴 first principl巴s from the 
known structure of the bath and the interaction. 
One may tak巴 a phenomenological viewpoint and 
introduce reasonable assumptions for the under働

lying st田hastic process defining the stochastic 
equations. One may regard this as a retr同t from 
the front of the modern statistical mechanics. 
However the value of a phenomenological ap-

Let us first recall the well梢known Langevin 
equation of a classical Brownian particle.1> The 
equation 1s written as 

proach should be appreciated sometimes particu・
( 1) larly when our physical insight is blurred by tech­

nicals of the modern methods.

dp …一＝… rP+R(t）三 F(t) , 
dt 

where p is the momentum of the Brownian paト

ticle, r is the friction constant and R is the random 
force. The sum, F（仏of the friction force and the 
random force is the total force exerted on the par網

ticle by the medium (bath) surrounding the par側

ticle. More generally we may suppo鉛 a syst巴m A 
described by a set of dynamical variables a and 
assum巴 the equation of motion to be written as 

The basic problems in such a phenomenological
approach will be the following: 

(I) How do we incorporat巴 the random inter­
action of the bath and the sys句m into the dynami­
cal equation of the system'? 

(II) How are the physical conditions of the 
bath represented in the stochastic character of the 
interaction'?

旦旦エロ F(a, t) , 
dt 

( 2 ) (III) Given the basic st田hastic pr目白S in the
dynamics of the system, how do we determin巴 the
Brownian motion of the system and how do we
predict the response of the system to an external
observation'?

where F(a, t) is a stochastic pr田ess. It may be 
norトlinear in a and al回may be non-local· in time; 
namely, it may in general depend on the past his­
tory of the motion. Equation (1) or (2) describes 
th巴 Brownian motion of the system A in its natural 
environm巴nt. When the syst巴m A is brought under 
a pr目白S of observation in which an external force 
K is exerted from an outsid巴 source and th巴 re­
sponse of A is observed, the stochastic equation 

These problems are of course mutually related. 
They are answered very cl回rly by eq. (1) for the 
classical example of the Brownian motion of a fr田

particle. In this example, the friction force acts
without retardation and corr巴spondingly the ran­
dom force has a white noise and furthermore it is 
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( 6) for a giv閥、statel of the bath. These are easily 
found from eq. (8) or (9) to follow the equation 

＋仙台〉

＝｛，上ff(x)+I'ぇ）く¢（）， t) > 

2 RyogoKu船

a Gaussian process. These assumptions are ade-
quate to describe a heavy Brownian particle float-
ing in a liquid and can be proved from a micro-
scopic ground for an idealized model. Th巷friction
constant r is related to the random force by the 
equation 

’，..，， 
r=_!___¥ <R(t十to)R(to))dt, ( 4) 

(p2) Jo 
which is an example of the fluctuatiorトdissipation
theorem.'・ 2' This relation畠ndthe Gaussian as幅

sumption assure the Maxw記lliandistribution for 
the momentum 。fthe p畠rticlein equilibrium. 
This c悶 beshown in m畠nyways, for example, 
using the Rice method or the Fokker駒Plan芯kequa嚇

tion. This simplicity of the th船 ryis mainly due 
to the fact that the random variable p in eq. (2) is 
linear in the random force. 
We would of cou路 魯Ii主eto generalize the theory 

in order to cover much wider categories. Generally 
speaking, th昏 randomforce may not be Gaussian, 
its spectrum may not be white and the equ乳tionof 
motion may not 治 linearin the dynamical vari輔

abl昔sand in the random for偲. Such generaliza網

tions cannot e畠silybe achieved and so the present 
status of the theory is rather unsatisfactory from or 

agener品lpoint of view, although some remarkable 
progress has加 問 madein r邸 時tyears.3) 

We now would like to start from some simple 
cases where there are not much difficulties for the 
basic questions (I) and (II). They are the ca総sin 
which the reaction of the system A to the bath can 
safely be ignored. In such a cas母weare allowed 
to assume a random Hamiltonian ff (ti defining 
the interaction of the system with the bath and 
write a Schodir磁器requation 

fJ¢ 1 -=-ff（ゆφ，
fJt iii 

for th母statevectorφof A or an equation of mか

t10n 

r
 for the density matrix p. We have here cbos号n畠

quanta! expression for the sake of generality, 
specialization to classical cases being obvious. 
The Hamiltonian !Jiグ（り isconsidered as random. 

More explicitly m 畠ssumethat !Jiク is孟 function
or 

of a random variable x(t) which is皐 C引 1m切ror 
a set of c-numbers. This means that the random 
variable x(t) has no internal degrees of fr鵠 dom鉛

that the possibility is excluded to consider t恥 re-
action of the system to th器 dynamic証Imotion of 
the bath. Further we assume that the process x(t) 

践校窃a緬“制謝h必，，勺

is e総書ntiallyMarkoffian in the sense that it can be 
supplemented with additional vari畠blesto form a 
complet昏 setof random variables l which make a 
M事政o偲anprocess. Namely we assume that the 
equation 

_j_P（ふりなれP(l,t) , ( 7) at 
holds for the probability P（んt)to find l at the 
伊 rticularstat母atthe time t. This assumption is 
fairly gerぬral. As an extreme case it includes the 
case w加rethe variable l defines a completely 
d号terministicmotion of bath, but in general it may 
be a coarse-grained description of the microscopic 
stat母ofthe bath. 

Now we extend the process of l to a composite 
proc慨は，向。r(l, p) by adding ¢ or p and con欄

sider the joint probability function P(l, ¢, t) or 
P(l, p, t). Then the composite proc側 isalso 
Marko倍anand follows the equation 

去P（んね｝

r ??(x)</J ) -t-6f一五」→r』f P（ん仇 t)• 

TtP(l，川

口（－士会開x），ρ川村，p,t) • 

(9} 

( 5 ) 

The distribution function P(l, ¢，り orP（んp,t) 
gives皐 fullinformation of the state of the system 
and the bath. For many purpo唱esit may suffice 
however to find the expectation 

〈φ（l，吋押（l，仇 t)d¢. (10) 

or 

くル ）
 

da且
e審
a｛
 

(12) 

_j_(p(l, t)) 
at 

=t閉 x），くp(J.,t))]+I';(p（ん (13) 

Th総eare regarded as generaliz容dequations of 

,W7-

( 8} 
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motion including the damping e官民tsas induced by 

the stochastic motion of th悲bath.The事eequations 
may be solved for appropriate initial conditions. 

Applications of this approach have b儲 nreviewed 

r官centlyby the present author at a conference in 
La Jolla and will soon恥 publish総ブ） As was 

mentioned earlier, this treatment ignores the rか

action of the system to the bath, or in other words 

the邑xchangeof号nergybetween the two. This is 

permissible for instance when the temperature of 
the bath is su飴cientlyhigh compared with the 
possible energy exchange. Many邑xamplesin NMR 

or M伽sbauereffects belong to this category bゃ
cau宰cthe reaction to the molecular motion of the 
bath is extremely small. In optic畠Iline制 shape

problems, similar situations may arise as long as 
we are interested in the central parts of the spectra 
where the perturbation mainly comes from distant 
collisions which do not very much disturb the or-

bital motion of colliding atoms. Thus the simple 
stochastic theory as repre器entedby eq. (12) or (13) 

has a wid邑 ran蕗sof application to the line-shape 
problems of NMR, ES.al, Mo》ssbauerand optical 
spectra. S) The random process gov告min事 the
change of the Hamiltonian may be assumed in a 

form証ppropriateto the problem, or it may be dか
rived from more basic processe器underlyingin the 

dynamics of the bath. We shall then be mostly 

interested in obtaining the understandin宰howthe 

random modulation will affect the response of the 
system to external forぬふ

The basic problems (I) and (II) have to 加 seriously

worried about if the energy exchan事告 isconsider記d.
They are still rather simple in cla草sicalca芭号sif the 

linearity of the equation of motion is preserved. 

Namely, for a free particle or for a harmonic os-
cillator th岱Langevineq. (1) allows some gener畠Ii-
zations.τhe random force R(t) may have a non-

white spectrum and correspondingly the friction is 
retarded or frequency-dependent. Thus eq. (l) 

may be replaced by 

dp - f' －←一一－¥ r(t-t') p(t')dt’十R(t), (14) 
dt Jo 

wh邑rethe retarded friction r(t) must satisfy the 
fluctuation-dissipation theorem2l 

local field H' (t). The Langevin equation may ht 
assumed to be6> 

_j.-M(t）＝ごr(Hけ H'(t）） ×M－φf×（M×Ho),
dt 

(161 

where Ho is a constant field and the last term持－

pres関係 thefriction in the Landau-Lifshitz type. 
We note that this equation contains large ambi-
嘉uities.Only in the limit of extremely fast modル

lation where the correlation time of H'(t) is shon 
compared with the Zeeman frequency and the 
mean amplitude of H'(t) itself, eq. (16) l路 dsto an 
unambiguous result, which may best be represented 

by an orientational diffusion equation (Fokker-

Planck equation) familiar in the classical theory 
of relaxation of a dipole in a viscous medium.7 
Similarly, eq. (2) may b悲 transformedinto a 

Fokker-Planck 何回tionif the stochastic force 

F(a, t) has an extremely short correlation time 
and also satisfie器 som辛 additionalconditions be同

cause the details of the stochastic nature of F(a，。
will then become irrelevant. On the other hand. 
if we want to keep a finite correlation time for 
F(a，。， thebasic questions become very difficult. 
In eq. (16), for example, what is the right form of 
the friction term that replaces the one in the 
equation and guarant切 sa generaliz吋自uctuation嚇

dissipation theorem'? Is the Gaussian証ssumption

for H’（t) really permissible? If so, is there any 
restriction for its correlation function? Thes容

questions cannot鵠きilybe answered and in fact 
they have not been much explored as yet. 
Let us turn to quantum-mechanical Brownian 

motions.τhe simplest example would be that of 

a harmonic oscillator, for which one may write 

the “Langevin" equation, 

b＝＝｛印。サr)b十f(t), 1 

b拳巴 一i（掛ぺケ÷fホ（t

(17} 

where band b隼 arethe annihilation and creation 

operators of the oscillator quanta and f and f家

r岳pr己sentthe random force. In order to guarantee 

approach to thermal equilibrium, one assumes that 

くfペt似たJ>=rna(t1-t2), 1 （聞
r(t）立ーしくR(t)l針。｝〉．

くp2)
くf(t1）！ペr2))=r(n－トI)0(t1-t2), J 

(15) ' 
when琵isth器 averagequantum number in equili砂

This and the Gaussian assumption for R(t) assure 
attainment of thermal equilibrium. 

In general non・linearc乳ses,the problems be織

come very complicated. For example, con告iderthe 

Brownian motion of a spin which feels a random 

brium. These assumptions seem to be a natural 

献 tensionof the fluctuation-dissipation theorem. 

eq. (4). 
A few di筋cultie唱旦re,however, to be noticed 

immediately. In the first place, unlike the corre胡
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土先物． In more general systems, however, this 
will not be true and the white嘩noi芭eassumptions 
can not be maintained. 

This fact leads, for example, to dif祭cultiesof the 
following sort. Con詣idera coupled system of a 
harmonic oscillator and an atom, which is in con-
tact with a鳩山 onlythrough interaction 加tw悌 a

the oscillator and the bath. One may be tempted 
to write an equation Ii孟e(20) for the d岳 部ityma-
trix for the o事cillatorand the atom by using t加
same form of the incoherent evolution operator 
I'o. This does not guarantee thermal equilibrium 
証ndis therefore incorrect. The use of a similar 
approach is not very unusual.10l It may not do 

much harm, however，部 longas only high excita“ 

tions are considered. 

As is wellknown, the sφ-called master equation 
can be obtained by tはingthe dia宰onalpart of a 
Bloch equation. A master equation describes 
transitions of the system among its quantum states. 
Equ畠tion(19) then gives the condition of the dか

ぬiledbalance, but there remains too事reatfreedom 
for the possible forms of the transition probabilities 

unless some idealization is introduced for the pro-
perties of the bath. Furth紋 more,the master equa-

tion is incomplete in the sense that it i伺 ve事out
any information about the coherent part of めe
evolution of the system. 

Concluding this pa戸r,the author would Ii泌 to
re戸以 thatthe theory of Brown motion i呈trans働

parent and complete only for very classical ex-
amples. Once when we start to go beyond the 
restrictions, which brought such轟 beautyto the 
classical theory, we encounter a number of diffi-
culties. These difficulties are concealed in diシ
guised form事inany method treating a many”body 
sy芭tern需 Itwill be thus important for the future 
of the statistical phy宰icsto develop collaboration 
of two line事ofapproach, one from the microscopic 
side and the other from a phenomenological side. 
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spondi食事classicalexample拳 theLangevin equation 
(17) is in fact a very complex object, because 也事
operators f翻 df本 mustcontain the dynamics of 

the bath and如 theoperator equation (17) are in 
the operator space of the oscillator and the bath. 
They are not at all simple as they look. 
Secondly, the two equations i鈴（18)are in fact 

incompatible with each other. It should be re-

membered that the equation 

r=(X剛Y(t))e叶 吋t

4 

=eβ完mJ二くY( 的〉也

holds generally for two arbitrary quantities X and 
y ifth記畠verageis taken over th奇rm畠i皐quilibrium． 
τhis m昏ansthat the $伊討ctraofくf喰（ti)J(t2)) and 
くf(ti)fペt2))C問 neverbe white at the same time, 
contrary to the昌ssumption(18〕. More pr容cisely,
the white nois母 assumptionis not permissible for 
a qua削減 randomforce as long as the exchang剖
唱nergyquanta高whave to be kept finite. 

The first di箔cultymay be avoided if the random 
force is eliminated. This task is畠chievedby for-

mulating the problem in terms of th事 densityma-
trix p for the Brownian system. A typical proce-

dure of this sort is the derivation of a Bloch“type 

容quationfor ρby treating the inter畠ctionbetween 
the system and the bath as a perturbation assuming 
thermal叫 uilibriumof the bath. 8l It should be 

kept in. mind that this corresponds to the Fokker-
Planck事quationfor a classical Brownian system 
under the assumption of a weak and fast modula側

tion. This appro晶chhas been used very widely in 
various problems. In particular, for the Brownian 
Oちcillatorone can derive the伺 uation,9l

。ρ 1
一一＝一一［J;Yo,p］十I'op'at iii 

I'opコロν｛［b,pb＋］÷［bp, bφ］｝ 

十o![b七pb］÷［b+p,b]} , (21) 

wher岳ィ君主 isthe unperturbed Hamiltonian of the 
O釦cillatorand I'o represents the incoherent motion 
of the oscillator caused by the interaction with the 
bath. The constants v and iJ are related to each 

other by 
S口 νaイ加0) (22) 

which guarantees thermal equilibrium in the steady 

state. 
Equation (20) may be obtained by using the as-

sumptions (18). One should note that the white-
noiseぉsumptions(18) do not lead to any contra雌

diction in this particular example because the 
energy exchange occurs by a definite amount 

(1安）

(20) 
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DISCUSSION 

N. G. VAN KAMPEN: The di節cultyyou mentioned in the last few minutes does not seem so 
serious to me. The Langevin equぶionwith the usu晶lstochastic properties of the Langevin force 
can only be believed for appropriate macroscopic quantities anyway. In other words, it is only 
tr問。na coarse欄grainedlevel, where questions of commutability ar，邑 alr1告adyirrelevant. I caル
not formulate this remark is precise terms, but I do not s出 aprima facie paradox. 

R. KuBo: I agree with you in that the Langevin equation is all rightぉ longas it is used for 
a macroscopic system. However, one would like to see how the Langevin equation is extended to 
quantum-mechanical systems. For example to an oscillator or an atom in contact with皐 bath.
This you will see in t治 exampleof quantum noise problems which have加endiscussed by Lax, 
Haken and other investigators. When you write for example an equation like 

b＝（均一f)b十点。

as Lax does, you should notice first th似 therandom force/(t) must 加 anoperator in a space dif-
f毒rentfrom the Hilbert space of the oscill証tor.On the other hand, you want after all formulate 
the problem in the space of the oscillator (or the system you are concerned with). That means 

that the random force is going to be eliminated, and in this elimination, only the stochastic 
characteristics of /(t) is used. In classical mechanics, there is no di筋cultyin the idealization of 
/(t) as a white noi総. In quantum-mechanics this is not possible. We would like to find a sim-
plest possible form of random force which can be used an idealization of説 bath. But it is no 
simple problem. For an oscillator or for an atom you C時 findsome simplication, and write the 
equ以ionof motion of皐densitymatrix in the form 

op I 
－＝一一［身伊o,p］十I'op'ar i最

where I'op repres串ntsthe incoherent motion. In conn号ctionwith the di偲culty,mentioned 
above, it should be kept in mind that this incoherent parts伺 nnotbe superposed. That is, for 
inst畠nce,when you have an oscillator and an atom coupled to each other you just cannot add 
I'o and I',. for the oscillator and the atom even when each separately is in cont畠ctwith its own 
bath. 
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