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Statistical mechanics aims at providing us with
theoretical methods to treat physical systems con-
sisting of a great number of degrees of freedom.
We are usually concerned with a certain projection
of the motion of the entire system; for example we
observe a Brownian particle under a microscope.
Such a projected motion will necessarily bear a
stochastic nature, because a great part of the
microscopic information is lost by projection. We
may formulate the problem generally in the follow-
ing way. We observe a physical system A which is
in contact with a large bath B. The bath B exerts
a force on A which may be regarded as stochastic
and induces a stochastic motion of A. In a very
wide meaning of the word, we may call this sort
of stochastic motion as a Brownian motion. The
purpose of the present paper is to give a few re-
marks on stochastic consideration of the Brownian
motion.

Let us first recall the well-known Langevin
equation of a classical Brownian particle.” The
equation is written as

_qp—:—rp—}-R(t)EF(r) . (1)

dr

where p is the momentum of the Brownian par-
ticle, y is the friction constant and R is the random
force. The sum, F(z), of the friction force and the
random force is the total force exerted on the par-
ticle by the medium (bath) surrounding the par-
ticle. More generally we may suppose a system A
described by a set of dynamical variables a and
assume the equation of motion to be written as

M =Fay, (2)
dr

~ where Fl(a, 1) is a stochastic process. It may be
non-linear in @ and also may be non-local in time;
namely, it may in general depend on the past his-
tory of the motion. Equation (1) or (2) describes
the Brownian motion of the system A in its natural
environment. When the system A is brought under
a process of observation in which an external force
K is exerted from an outside source and the re-
sponse of A is observed, the stochastic equation

is replaced by

44— Fla, ) +K() . (3)

dr

Equation (1) or {2) may be used for determination
of the unperturbed Brownian motion of the system
and eq. (3) for determination of the response of
the system to XK. These equations are defined by
specifying the basic random process incorporated
in the process R or F.

We may call this sort of approach a stochastic
theory of a randomly modulated system. As a
phenomenological theory, one will not necessarily
be bothered how one derives the stochastic proper-
ties of R or F by the first principles from the
known structure of the bath and the interaction.
One may take a phenomenological viewpoint and
introduce reasonable assumptions for the under-
lying stochastic process defining the stochastic
equations. One may regard this as a retreat from
the front of the modern statistical mechanics.
However the value of a phenomenological ap-
proach should be appreciated sometimes particu-
larly when our physical insight is blurred by tech-
nicals of the modern methods.

The basic problems in such a phenomenological
approach will be the following:

(Il How do we incorporate the random inter-
action of the bath and the system into the dynami-
cal equation of the system?

(I) How are the physical conditions of the
bath represented in the stochastic character of the
interaction?

(III) Given the basic stochastic process in the
dynamics of the system, how do we determine the
Brownian motion of the system and how do we
predict the response of the system to an external
observation?

These problems are of course mutually related.
They are answered very clearly by eq. (1) for the
classical example of the Brownian motion of a free
particle. In this example, the friction force acts
without retardation and correspondingly the ran-
dom force has a white noise and furthermore it is
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These assumptions are ade-

a Gaussian process.
quate to describe a heavy Brownian particle float-
ing in a liquid and can be proved from a micro-
scopic ground for an idealized model. The friction
constant 7 is related to the random force by the
equation

r:—l—-s R+ 0 (D!
<P Jo

which is an example of the fluctuation-dissipation
theorem.»? This relation and the Gaussian as-
sumption assure the Maxwellian distribution for
the momentum of the particle in equilibrium.
This can be shown in many ways, for example,
using the Rice method or the Fokker-Planck equa-
tion. This simplicity of the theory is mainly due
to the fact that the random variable p in eq. (2) is
linear in the random force.

We would of course like to generalize the theory
in order to cover much wider categories. Generally
speaking, the random force may not be Gaussian,
its spectrum may not be white and the equation of
motion may not be linear in the dynamical vari-
ables and in the random force. Such generaliza-
tions cannot easily be achieved and so the present
status of the theory is rather unsatisfactory from
a general point of view, although some remarkable
progress has been made in recent years.?

We now would like to start from some simple
cases where there are not much difficulties for the
basic questions (I) and {II). They are the cases in
which the reaction of the system A to the bath can
safely be ignored. In such a case we are allowed
to assume a random Hamiltonian 7(¢) defining
the interaction of the system with the bath and
write a Schodinger equation

(4)

29 _ 1
o =W, (5)

for the state vector ¢ of A or an equation of mo-
tion
de 1

at ik (6)

[#), o],
for the density matrix p. We have here chosen a
quantal expression for the sake of generality,
specialization to classical cases being obvious.
The Hamiltonian 57 (1) is considered as random.
More explicitly we assume that 7 is a function
of a random variable x{f) which is a c-number or
a set of c-numbers. This means that the random
variable x(¢) has no internal degrees of freedom so
that the possibility is excluded to consider the re-
action of the system to the dynamical motion of
the bath, Further we assume that the process x{t}
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is essentially Markoffian in the sense that it can be
supplemented with additional variables to form a
complete set of random variables 2 which make a
Markoffian process. Namely we assume that the
equation

a

o P2, )=IP2, 1),
holds for the probability P(2, #) to find 2 at the
particular state at the time . This assumption is
fairly general. Asan extreme case it includes the
case where the variable 1 defines a completely
deterministic motion of bath, but in general it may
be a coarse-grained description of the microscopic
state of the bath.

Now we extend the process of 1 to a composite
process (2, ¢) or (2, p) by adding ¢ or g and con-
sider the joint probability function P(2, ¢, 1) or
P(2, p, 1}. Then the composite process is also
Markoffian and follows the equation

2
o PR 4, 1)

___{__0_3__ X G
a¢ ifi

(7)

+F1}P(z, g0, (8
or
-—a*PU. o 1)

ot .
d 1
={~ o W, AP0
(9)

The distribution function P(4, ¢, 1} or P(1, g, 1)
gives a full information of the state of the system
and the bath. For many purposes it may suffice
however to find the expectation

W, r)>=j¢m, g,0d¢,  (10)
or

Gt =oPt 0.0 dp, 1)

for a given state 1 of the bath. These are easily
found from eq. (8) or (9) to follow the equation

a
"a—t“(él’(l, 1)
={—~¥-%(x) +r‘}<¢u, 9, (12)
it
or

3
<Pl 1)

=‘é‘[5{”"‘)’ Cold, Y1+ 0> . (13)

These are regarded as generalized equations of
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motion including the damping effects as induced by
the stochastic motion of the bath. These equations
may be solved for appropriate initial conditions.

Applications of this approach have been reviewed
recently by the present author at a conference in
La Jolla and will scon be published.¥ As was
mentioned earlier, this treatment ignores the re-
action of the system to the bath, or in other words
the exchange of energy between the two. This is
permissible for instance when the temperature of
the bath is sufficiently high compared with the
possible energy exchange. Many examplesin NMR
or Mossbauer effects belong to this category be-
cause the reaction to the molecular motion of the
bath is extremely small. In optical line-shape
problems, similar situations may arise as long as
we are interested in the central parts of the spectra
where the perturbation mainly comes from distant
collisions which do not very much disturb the or-
bital motion of colliding atoms. Thus the simple
stochastic theory as represented by eq. {12) or (13)
has a wide range of application to the line-shape
problems of NMR, ESR, Mossbauer and optical
spectra.® The random process governing the
change of the Hamiltonian may be assumed in a
form appropriate to the problem, or it may be de-
rived from more basic processes underlying in the
dynamics of the bath. We shall then be mostly
interested in obtaining the understanding how the
random modulation will affect the response of the
system to external forces.

The basic problems (I) and (IT) have to be seriously
worried about if the energy exchange is considered.
They are still rather simple in classical cases if the
linearity of the equation of motion is preserved.
Namely, for a free particle or for a harmonic os-
cillator the Langevin eq. (1) allows some generali-
zations. The random force R(s) may have a non-
white spectrum and correspondingly the friction is
retarded or frequency-dependent. Thus eq. {I}
may be replaced by

dz _ [

- 5 rle—¢) ple")de' + R ,
0

ar (14}

where the retarded friction y{r) must satisfy the
fluctuation-dissipation theorem?

S
90
This and the Gaussian assumption for R{(f) assure
attainment of thermal equilibricm.
In general non-linear cases, the problems be-
come very complicated. For example, consider the
Brownian motion of a spin which feels a random

() {R(OR(0)) . (15)

local field H'(s}.
assumed to be?

The Langevin equation may be

"'d-"M(t) =y (Ho+H (1)) X M—pM X (MX Hy) ,

dr

(16+
where Hy is a constant field and the last term re-
presents the friction in the Landau-Lifshitz type.
We note that this equation contains large ambi-
guities. Only in the limit of extremely fast moda-
lation where the correlation time of H'{r) is short
compared with the Zeeman frequency and the
mean amplitude of H' () itself, eq. {16) leads to an
unambiguous result, which may best be represented
by an orientational diffusion equation (Fokker-
Planck equation} familiar in the classical theory
of relaxation of a dipole in a viscous medium.”
Similarly, eq. (2) may be transformed into a
Fokker-Planck equation if the stochastic force
Fla, 1) has an extremely short correlation time
and also satisfies some additional conditions be-
cause the details of the stochastic nature of Fla, 1)
will then become irrelevant. On the other hand,
if we want to keep a finite correlation time for
Fla, 1), the basic questions become very difficult.
In eq. {16), for example, what is the right form of
the friction term that replaces the one in the
equation and guarantees a generalized fluctuation-
dissipation theorem? Is the Gaussian assumption
for H'(r) really permissible? If so, is there any
restriction for its correlation function? These
questions cannot easily be answered and in fact
they have not been much explored as yet.

Let us turn to quantum-mechanical Brownian
motions. The simplest example would be that of
a harmonic oscillator, for which one may write
the “Langevin’’ equation,

b:i(wo+i~%- r>b+f(f) , -
b*:__,-(a,o._% P,

where b and b* are the annihilation and creation
operators of the oscillator quanta and f and f*
represent the random force. In order to guarantee
approach to thermal equilibrium, one assumes that

(f*(h)f(h))ﬂ)’ﬁﬁ(fl“fz) » } (18)
{fe) o) =rA+1)3 1),

when 7 is the average quantum number in equili-
brium. These assumptions seem to be a natural
extension of the fluctuation-dissipation theorem,
eq. (4).

A few difficulties are, however, to be noticed
immediately. In the first place, unlike the corre-
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sponding classical example, the Langevin equation
(17) is in fact a very complex object, because the
operators f and f* must contain the dynamics of
the bath and so the operator equation (17) are in
the operator space of the oscillator and the bath.
They are not at all simple as they look.

Secondly, the two equations in (18) are in fact
incompatible with each other. It should be re-
membered that the equation

5 (X0 Yt)e-eds

—efte r Y X(0)de—">"dr , (19)

holds generally for two arbitrary quantities X and
Y if the average is taken over thermal equilibrium.
This means that the spectra of <f*(t:)f(tz)> and
{f(t:) F*(t2}> can never be white at the same time,
contrary to the assumption (18). More precisely,
the white noise assumption is not permissible for
a quantal random force as long as the exchanged
energy quanta fiw have to be kept finite.

The first difficulty may be avoided if the random
force is eliminated. This task is achieved by for-
mulating the problem in terms of the density ma-
irix p for the Brownian system. A typical proce-
dure of this sort is the derivation of a Bloch-type
equation for p by treating the interaction between
the system and the bath as a perturbation assuming
thermal equilibrium of the bath.® It should be
kept in. mind that this corresponds to the Fokker-
Planck equation for a classical Brownian system
under the assumption of a weak and fast modula-
tion. This approach has been used very widely in
various problems. In particular, for the Brownian
oscillator one can derive the equation,”

2 _ 1o 4 re, (20)
ot ik
Top=v{[b, pb*1+[bp, b*1}
+8{(b*, pbl+[b*p, b1} , (21)

where %% is the unperturbed Hamiltonian of the
oscillator and /" represents the incoherent motion
of the oscillator caused by the interaction with the
bath. The constants v and § are related to each
other by

d=yeFrug | (22)
which guarantees thermalequilibrium in the steady
state.

Equation (20) may be obtained by using the as-
sumptions (18). One should note that the white-
noise assumptions (18) do not lead to any contra-
diction in this particular example because the
energy exchange occurs by a definite amount

+#ws. In more general systems, however, this
will not be true and the white-noise assumptions
can not be maintained.

This fact leads, for example, to difficulties of the
following sort. Consider a coupled system of a
harmonic oscillator and an atom, which is in con-
tact with a bath only through interaction between
the oscillator and the bath. One may be tempted
to write an equation like (20} for the density ma-
trix for the oscillator and the atom by using the
same form of the incoherent evolution operator
I'e. This does not guarantee thermal equilibrium
and is therefore incorrect. The use of a similar
approach is not very unusual.!® It may not do
much harm, however, as long as only high excita-
tions are considered.

As is wellknown, the so-called master equation
can be obtained by taking the diagonal part of a
Bloch equation. A master equation describes
transitions of the system among its quantum states.
Equation (19) then gives the condition of the de-
tailed balance, but there remains too great freedom
for the possible forms of the transition probabilities
unless some idealization is introduced for the pro-
perties of the bath, Furthermore, the master equa-~
tion is incomplete in the sense that it leaves out
any information about the coherent part of the
evolution of the system.

Concluding this paper, the author would like to
repeat that the theory of Brown motion is trans-
parent and complete only for very classical ex-
amples. Once when we start to go beyond the
restrictions, which brought such a beauty to the
classical theory, we encounter a number of diffi-
culties. These difficulties are concealed in dis-
guised forms in any method treating a many-body
system. It will be thus important for the future
of the statistical physics to develop collaboration
of two lines of approach, one from the microscopic
side and the other from a phenomenological side.
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DISCUSSION

N. G, vaN KaMpeN: The difficulty you mentioned in the last few minutes does not seem so
serious to me. The Langevin equation with the usual stochastic properties of the Langevin force
can only be believed for appropriate macroscopic quantities anyway. In other words, it is only
true on a coarse-grained level, where questions of commutability are already irrelevant. I can-
not formulate this remark is precise terms, but I do not see 2 prima facie paradox.

R. Kupo: I agree with you in that the Langevin equation is all right as long as it is used for
a macroscopic system. However, one would like to see how the Langevin equation is extended to
quantum-mechanical systems. For example to an oscillator or an atom in contact with a bath.
This you will see in the example of quantum noise problems which have been discussed by Lax,
Haken and other investigators. When you write for example an equation like

l;-“*—(icvo"‘g‘>b+f(t) ,

as Lax does, you should notice first that the random force f(f) must be an operator in a space dif-
ferent from the Hilbert space of the oscillator. On the other hand, you want after all formulate
the problem in the space of the oscillator (or the system you are concerned with). That means
that the random force is going to be eliminated, and in this elimination, only the stochastic
characteristics of f(¢) is used. In classical mechanics, there is no difficulty in the idealization of
F(?) as a white noise. In quantum-mechanics this is not possible. We would like to find 2 sim-
plest possible form of random force which can be used an idealization of a bath. But it is no
simple problem. For an oscillator or for an atom you can find some simplication, and write the
equation of motion of a density matrix in the form

20

-1
at b ih [%p P]‘l‘['oﬂ ’

where I'op represents the incoherent motion. In connection with the difficulty, mentioned
above, it should be kept in mind that this incoherent parts cannot be superposed. That is, for
instance, when you have an oscillator and an atom coupled to each other you just cannot add

Iv and I'; for the oscillator and the atom even when each separately is in contact with its own
bath.



