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AN ANALYTIC METHOD IN STATISTICAL MECHANICS
Ryogo KUBO

Department of Physics, Imperial University of Tokyo

1. The Problem of Ferromagnetism.

In order to illustrate the nature of the problem, let us consider a system of N spins, each of which
takes +1 or —1 value. If the number of the nearest neighbors of a given atom is z, then the total
number of neighboring atomic pairs is P = zN/2. Following Bethe, we consider only the nearest neighbor
interactions and ignore other interactions. We write the interactions as £, _, E__, and E __ and put
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In the presence of an external magnetic field H, the spin state + or — has the energy — mi or mH
respectively. Here m is the magnetic moment of the atom in the + spin state. Further we put
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Consider a configuration of these N atoms. The relative weight of each configuration is given by
assigning the factor ¢ , or&_ toeach of + or — spins and the factor ., , m,_, or ;__ to each of
neighboring pairs according to the spin pair state. Namely the relative weight of each spin configuration
is a monomial which is order N in ¢’s and order P in %’s. The sum-over-states (Zustandsumme) is
obtained by summing up these relative weights over all possible configurations, so that it is a
homogeneous function of order N with respect to ¢’s and order P with respect to n’s. If the asymptotic
form of this function is found for N — co, our problem is completely solved.

Thus the sum-over-states 5 Nis written as
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where N, and N_ are the numbers of + spin atoms and — spin atoms respectively, and P+ .} etc. are
the numbers of atomic pairs in the states + =+ etc. Note that the thermodynamic function corresponding
to (1.3) is not a Helmholiz free energy but is a Gibbs free energy which is a function of the intensity
variable H. The resultant magnetic moment of the whole system in a given configuration is

M=m(N, —N) . | (1.4)

A method to treat this sort of problem is to find the maximum term in the summand rather than to
calculate the sum. In this method the number N, or N_ (or M) is regarded as fixed and we calculate
the weight W for a given set of P, , P,_ , and P__ which are consistent with this constraint. Then it
is multiplied by the Boltzmann factor to obtain the term in the summand of (1.3’) and the resulting
expression must be maximized by proper choice of the values of P,, , P __ and P_ .
Thermodynamically this procedure corresponds to calculation of the minimum of the Helmholiz free
energy. The difficulty of this sort of approach lies in combinatory calculations of W, which is elementary
but becomes complicated in higher approximations and is almost hopeless, for rigorous treatments.
Therefore, there have been devised such indirect methods as Bethe’s method1 and the quasi-chemical



method of Guggenheim and Fowlerz) and some other intuitive methods like that of Takagi,3)

However, one wonders if an analytical method can be devised for calculation of the asymptotic form
of the expression (3). As will be shown in the following, this is possible for a system in one-dimension,
The author is not able to conclude at present if this can be extended to two or three dimensions and only
hopes that the present note may give some hints for such possibilities. In one-dimensional cases, the
problem is shown to be reduced to a linear difference equation. In higher dimensions this may be
replaced by a non-linear partial difference equation. As will be shown later, no discontinuous critical
phenomena are possible in one-dimension. It may be conjectured that the occurrence of such phenomena
in higher dimensions will be essentially due to such non-linearity.

Let us suppose that N atoms make an array on a line. Constructing this system by adding one atom
after another, we ask how the sum-over-states = N changes with increasing N. By finding this law we try
to determine the asymptotic form of = N

. + - . .
We write the sum-over-state as 51 (or E ) when it is taken over all configurations of atoms 1, 2, ...,

N —1 with the constraint that the N-th atom is in the + (or —) state. Then it is clear that this function
satisfies a difference equation as shown below.
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Regarding & and E as a two-component vector and defining
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we write Eq. (1.5) as
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Namely, EN + is generated from = N by a given transformation. The meaning of Eq. (1.5) will be clear
if Eq. (1.3)"1s written as
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In order to solve Eq. (1.8) we put
=y =My | (1.9)
and obtain the eigenvalue problem
Ry =20y . (1.10)

Since Eq. (1.8) is linear, its solution for an arbitrary initial condition is expanded in terms of the
eigen-functions of (1.10). Namely, if the solutions of Eq. (1.10) are denoted by A> Wis Ap, ¥ 5 we have
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where the coefficients are determined by the initial conditions
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but this is not needed in the foliowing arguments.
The sum-over-states relaxed the constraint on the N-th atom is
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and the Gibbs free energy is
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For N — oo, there remains in the expression (1.11) the term with the larger A, the other being
asymptotically ighored;
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and consequently

G =~ kT log CayV= — NKT log ), (1.12)

That is to say, we need only the largest eigenvalue for calculation of the Gibbs free energy. A complete
solution of the problem i$ not necessary.
In terms of the chemical potential, the Gibbs free energy is expressed as

G=Nu.
Equation (1.12) gives
w =— kT log u .
In other words, the absolute activity, exp(u/kT) is given as the largest eigenvalue of a transformation
which characterize the system.
The strength of magnetization is obtained from G by

0G/d H=— M. (1.13)

This relation is found also from (1.2) and (1.3) in the following way. The magnetization in a given
configuration is given by Eq. (1.4), so that the thermodynamic average is
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Let us now calculate the eigenvalues solving the equation
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The largest eigenvalue M is found to be
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and the magnetization M is given by
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In the above, n . and n__ are generally different. But for spin systems we can put
Mygo =M. = , my/ny, =8 (1.17)
and simplify Eq. (1.16) to
sinh mH/KT

M = Nm 5 5
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The energy and the entropy are easily calculated, but they are omitted here.

(1.18)

2. The Alloy Problem.

We consider now an alloy consisting of two kinds of atoms denoted by + and —. For an alloy, the
mk,e + and N_ are prescribed so that the sum-over-states, Z, with this constraint is the coefficient '
~in the polynomial (1.3’). This is expressed in terms of a contour integral as is familiar in the

Darwm Fowler method. It is convenient to write

£, =el and £ =e ¢ (2.1)

and
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This integral i$ evaluated by the steepest descent method choosing an appropriate parameter { . Using

=} a8 was obtained in the previous section, namely
Ey =l

*
{ is determined by the condition
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Asymptotically, Z is given by
“log Z =N log \(¢) (2.4)
and the free enregy by

F =— NkT log A(Z ). (2.5)
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Here the parameter { is a function of (N, — N_)/N and the temperature 7. From this, every
thermodynamic quantity is derived. Equation (2.3) is identical with that for the magnetization M. The
parameter { corresponds to mH/kT, but it has no physical meaning in the alloy problem. It serves as the
selector. By putting v

77++ =77—— =« 4 T’+_/n++ =B; (N+ —N__)/N=V

*
the parameter { can be easily elliminated from Egs. (2.3) and (2.5) to result
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The internal energy is given by
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where
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N4q 8n++log Z =P etc.
are the average numbers of the nearest atom pairs. The expression (2.7) is of course identical with the
thermodynamic relation
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If we put
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the anomalous part of the internal energy due to the ordering of atoms in the alloy is
Bv2 +\/1 + ( ,32—1 )V2
(8 +N1+(8=10? ) Si+(g?=1) .7
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In particular , when N, = N_ (v = 0), it is

E=NWwg/(1+ B)

3. General Discussions. Proof of Non-existence of Phase Change in One-Dimensions.

We consider an array of atoms on a line. Each atom is in one of the possible states, which are
designated by /i = 1, 2, ... r. The states can either be discrete or continuous. The interaction energy of
neighboring /~atom and k-atom is assumed to be £ = E ; We introduce the selector ¢, for an i-atom.
If there is an energy FE. associated with the state i ,t(hiS is identified with the Boitzmann factor
exp(—E/D. In this way, for each configuration of atoms the statistical weight is given by assigning the
factor ¢ ;to each atom in the state i and the factor n,, = exp(—E,, /kT) to each pair of atoms in the states
i and k, so that the weight is a2 monomial of the order N with respect to £’s and of the order P with
respect to n’s. The sum-over-states is then a homogeneous function of the same orders.

For a one-dimensional array of atoms, the relation defining the change of the sum-over-states with
respect to the change of N is the same as the previous example discussed in the section 1. If we write

E Ni for the sum-over-states with the constraint that the N-th atom is specified in the state i and regard (
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Note that the elements of Q and R can never be negative. The general solution of Eq. (3.1) is expanded
as

Ey =13, C 0@ (3.4)

in terms of the eigenvalues and eigenfunctions of
Ry =10y . (3.5)

The expansion coefficients are determined by the initial conditions but the asymptotic behavior is solely
determined by the term which corresponds to the largest eigenvalue. We may put

gy~ My (3.6)
and have the Gibbs free energy
G = —NkT log A, 3.7
where A is the largest root of the equation
detl R— X Q) =0. (3.8)

If the system shows a discontinuous phase change, there must be a crossing of two roots of Eq. (3.8) at
the corresponding temperature and pressure. However, such a crossing never occurs except some special
cases as we will see in the following. '

The largest eigenvalue of Eq. (3.4) is determined by the maximization,

YR IR, G,
A= — = C kK = Max. (3.9
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Let the eigenfunction corresponding to this be denoted by ¢*. Then we find that % > 0. Namely ¢
has no mode on the set M ={1,2,.... If for yp® < 0 some /s, the expression (3.9) can be made larger
by changing the sign of such components, in contradiction to the assumption that (3.9) is the maximum
for 4. Also ¢ is proved to be real if R, is symmetric. Now let M, be the subset of M on which

% > 0 and suppose that another function P, which is orthogonal to y* i.e. d:anp'B‘ = 0, also gives
the %aximum value of the expression (3.9). It holds then M, C M~ M_. Then the function ¢ = ll!a‘
+ " makes the expression (3.9) even larger, contrary to the ‘assumption, %ecause
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The equality only holds when R,. ’s are all zero for the intersection of M and M,. Otherwise the
inequality is true. Therefore the largest eigenvalue can generally never be (cylegenera e. When a lower
eigenvalue approaches the largest eigenvalue with changing parameters such as temperature and pressure,
it never really crosses the larger one by a sort of resonance as is illustrated in Fig. 1. This can be easily
seen for simple examples. Therefore, no discontinuous phase change can occur in one-dimensional

systems.
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Crossing without such a resonance can happen only in the cases where the matrix R has such a form
as shown in Fig. 2. If the interaction energies among M _ is smaller than those among M,, the eiements
of R* are larger than those of R, at low temperatures. Then the largest eigenvalue of Ri is larger than
that of R,. If dim M_ < dim M,, the order of these eigenvalues will be reversed at a certain
temperature, above whicﬁ R, has the Targer eigenvalue. In such a case, crossing of the eigenvalues really
occur at a critical temperatur'g, where a phase change takes place.
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We generally have R, > 0 in one-dimension and so no phase change. But in higher dimensions, the
matrix R may have such a form as described above and accordingly a phase change can be realized. For
example, consider the ferromagnetism of spins. In order to make it two-dimensional, we take a row of n
spins and add it one after another as shown in Fig. 3. In this case the number of states for » spins in a
row is 27 so that R is a 2™2" matrix. If Myy =m__ >m, ,the matrix elements between the states
of complete ordering, namely the state where » spins are all plus and that where all are minus become '
very small as »n goes to infinity. Therefore we expect that the matrix R will have asymptotically a form
like that is shown in Fig. 4, where R + or R_ corresponds the ordered state with plus or minus spins and
RO corresponds to the disordered states. Matrix elements between M., M_, and MO become
vanishingly small. (More exactly the states cannot be so distinctly separated, but is quasi-continuously
grouped in such a manner.) Configurations in which spins are disordered are far more numerous than
those for ordered. Namely the dimension of R, is far larger than those of R | or R_. Hence the state
M, or M_ will be realized at low temperatures (which of them is realized depends on the external field).
On the other hand the entropy dominates at higher temperatures and the disorder will appear. This is
considered as the phase change from the ferromagnetic to the paramagnetic state.

The above is only a qualitative argument for the fact that phase change is possible in two or higher
dimensions while it is impossible in one-dimension. The basic physics is in accord with that which is
commonly accepted.

Let us assume that the matrix Q has elements only on the diagonal which are functions of an external
force X. The corresponding extensive variable x defined by
0G d log A

8—1?= x = — NkT 5X

Using the relations
a - ap B =
WP =8, WRYP = N5,

we obtain easily from (3.4) the formula
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If Qis even in X, this is zero for X = 0. Therefore an ordering like ferromagnetism does not occur
generally. For the same reason, in the statistical distribution of chain molecules, the end-to-end distance
is most likely to be zero as long as the excluded volume effect is not considered. In the alloy problems,
the number of constituent atoms are prescribed so that the thermodynamic functions are given by the two
equations, Eq. (3.10) and

F = — NkT log A.
The situation is the same as that was discussed in section 2. For the extremum problem (3.9), Eq. (3.10)

is considered as a subsiduary condition. Therefore the proof remains the same as before for the
non-existence of phase change in one dimensions.

4. €oncluding Remarks.

By the same method we can treat a one-dimensional system in which the neighboring atoms are
interacting with a potential depending on the distance. If the interaction is considered only between the



nearest neighbors, this is the same as what was given by Dr. H. Takahashi4) some time ago. If the next
nearest neighbor interactions are also included, namely if interactions with four atoms are included for
each atom in the system, the problem reduces to an eigenvalue problem for an integral equation. The
author has solved this for a square well potential, but the final numerical calculation has not yet been

completed.

In conclusion, the writer thanks to Dr. Takahashi for useful discussions. The non-existence theorem
of phase change in one-dimension was suggested by his physical intuition, which stimulated the writer to
attempt this mathematical proof.
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